
Lecture 18 – Friday, Oct. 192.004 Fall ’07 

Root Locus sketching rules

Wednesday
• Rule 1: # branches = # poles
• Rule 2: symmetrical about the real axis
• Rule 3: real-axis segments are to the left of an odd number of real-

axis finite poles/zeros
• Rule 4: RL begins at poles, ends at zeros
Today
• Rule 5: Asymptotes: angles, real-axis intercept
• Rule 6: Real-axis break-in and breakaway points
• Rule 7: Imaginary axis crossings (transition to instability)
Next week
• Using the root locus: analysis and design examples 
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Poles and zeros at infinity
T (s) has a zero at infinity if T (s→∞)→ 0.

T (s) has a pole at infinity if T (s→∞)→∞.

Example

KG(s)H(s) =
K

s(s+ 1)(s+ 2)
.

Clearly, this open—loop transfer function has three poles, 0, −1, −2. It has no
finite zeros.
For large s, we can see that

KG(s)H(s) ≈
K

s3
.

So this open—loop transfer function has three zeros at infinity.
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Root Locus sketching rules

• Rule 5: Asymptotes: angles and real-axis intercept

σa =

P
finite poles−

P
finite zeros

#finite poles−#finite zeros

θa =
(2m+ 1)π

#finite poles−#finite zeros
m = 0,±1,±2, . . .

In this example, poles = {0,−1,−2,−4},
zeros = {−3} so

σa =
[0 + (−1) + (−2) + (−4)]− [(−3)]

4− 1
= −

4

3

θa =
(2m+ 1)π

4− 1
=

½
π

3
,π,

5π

3

¾
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Figure by MIT OpenCourseWare.
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Root Locus sketching rules

• Rule 6: Real axis break-in and breakaway points

Nise Figure 8.13

For each s = σ on a real—axis
segment of the root locus,

KG(σ)H(σ) = −1⇒ K = −
1

G(σ)H(σ)
(1)

Real—axis break—in & breakaway points
are the real values of σ for which

dK(σ)

dσ
= 0,

where K(σ) is given by (1) above.
Alternatively, we can solveX 1

σ + zi
=
X 1

σ + pi
.

for real σ.

Figure by MIT OpenCourseWare.
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Root Locus sketching rules

• Rule 6: Real axis break-in and breakaway points

Nise Figure 8.13

In this example,

KG(s)H(s) =
K(s− 3)(s− 5)

(s+ 1)(s+ 2)

so on the real—axis segments we have

K(σ) = −
(σ + 1)(σ + 2)

(σ − 3)(σ − 5)
= −

σ2 + 3σ + 2

σ2 − 8σ + 15

Taking the derivative,

dK

dσ
= −

11σ2 − 26σ − 61

(σ2 − 8σ + 15)2

and setting dK/dσ = 0 we find

σ1 = −1.45 σ2 = 3.82

Alternatively, poles = {−1,−2},
zeros = {+3,+5} so we must solve

1

σ − 3
+

1

σ − 5
=

1

σ + 1
+

1

σ + 2
⇒

11σ2 − 26σ − 61 = 0.

This is the same equation as before.

Figure by MIT OpenCourseWare.
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Root Locus sketching rules

• Rule 7: Imaginary axis crossings
If s = jω is a closed—loop pole
on the imaginary axis, then

KG(jω)H(jω) = −1 (2)

The real and imaginary parts of (2)
provide us with a 2× 2 system
of equations, which we can solve
for the two unknowns K and ω

(i.e., the critical gain beyond which
the system goes unstable, and the

oscillation frequency at the critical gain.)

Note: Nise suggests using the Ruth—
Hurwitz criterion for the same purpose.
Since we did not cover Ruth—Hurwitz,

we present here an alternative
but just as effective method.
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Root Locus sketching rules

• Rule 7: Imaginary axis crossings

In this example,

KG(s)H(s) =
K(s+ 3)

s(s+ 1)(s+ 2)(s+ 4)

=
Ks+ 3K

s4 + 7s3 + 14s2 + 8s
⇒

KG(jω)H(jω) =
jKω + 3K

ω4 − j7ω3 − 14ω2 + j8ω
.

Setting KG(jω)H(jω) = −1,

−ω4 + j7ω3 + 14ω2 − j(8 +K)ω − 3K = 0.

Separating real and imaginary parts,½
−ω4 + 14ω2 − 3K = 0,
7ω3 − (8 +K)ω = 0.

In the second equation, we can discard the
trivial solution ω = 0. It then yields

ω2 =
8 +K

7
.

Substituting into the first equation,

−

µ
8 +K

7

¶2
+ 14

µ
8 +K

7

¶
− 3K = 0⇒

K2 + 65K − 720 = 0.

Of the two solutions K = −74.65, K = 9.65 we can
discard the negative one (negative feedback ⇒ K > 0).

Thus, K = 9.65 and ω =
p
(8 + 9.65)/7 = 1.59.
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