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So far

• First-order systems (linear)
• Second-order systems (linear)

Today

• Higher-order systems (linear)
– when can we approximate as second-order?

• Nonlinear systems
– Review of cases we’ve seen
– Linearization 

• Example: pendulum
– DC motor nonlinearities

• Example: load connected with gears; saturation, dead zone,
backlash
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The effect of multiple poles

C(s) =
A

s
+

B (s+ ζωn) + Cωd

(s+ ζωn)
2
+ ω2d

+

D

s+ αr
.

Images removed due to copyright restrictions.

Please see: Fig. 4.23 and 4.24 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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Linear vs Nonlinear (revisited)

f(t)

fv

v(t) ≡ ẋ(t)

Viscous friction:
f(v(t)) = −fvv(t)

f(t)

fc
v(t) ≡ ẋ(t)

Coulomb friction: f(x(t)) = −fcsgn (x(t))

f(t)

x(t)

Linear spring:
f(x(t)) = Kx(t)

K ≡ slope

f(t)

x(t)

Nonlinear spring:
f(x(t)) = K(x)x(t)

K(x1)

x1 x2

K(x2)
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Linear vs Nonlinear (revisited)

Linear system: f(x(t)) = kx(t)

Consider linear combination of inputs

a1x1(t) + a2x2(t)

Then output is same
linear combination of outputs

f (a1x1(t) + a2x2(t)) = k (a1x1(t) + a2x2(t)) =

a1 (kx1(t)) + a2 (kx2(t)) = a1f (x1(t)) + a2f (x2(t)) .

Nonlinear system: f(x(t)) 6= kx(t)
e.g., f(x(t)) = k

p
x(t).

Consider same linear combination of inputs

a1x1(t) + a2x2(t)

Then output is not the same
linear combination of outputs

f (a1x1(t) + a2x2(t)) = k
p
(a1x1(t) + a2x2(t)) 6=

a1
p
kx1(t) + a2

p
kx2(t) = a1f (x1(t)) + a2f (x2(t)) .

e.g., linear spring e.g., nonlinear spring
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Linearization

f(x) ≈ f(x0) +ma (x− x0)

where

ma =
df

dx

¯̄̄̄
x=x0

.

Example
Linearize f(x) = 5 cosx near x = π/2.

Answer: We have f(π/2) = 0, ma = −5, so

f(x) ≈ −5
³
x−

π

2

´
(x ≈ π/2)

A

f (x)

δx

δf (x)

~f (x)~

f (x0)

0 x0 x
x

O
ut

pu
t

Input

Figure by MIT OpenCourseWare.

Images removed due to copyright restrictions. 
Please see Fig. 2.48 and 4.24 in Nise, Norman S. Control Systems Engineering. 
4th ed. Hoboken, NJ: John Wiley, 2004.
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Linearizing systems : the pendulum

The equation of motion is found as

J θ̈ +
MgL

2
sin θ = T. (We cannot Laplace transform!)

For small angles θ ≈ 0, we have

sin θ ≈
d sin θ

dθ

¯̄̄̄
θ=0

× θ = cos θ|θ=0 × θ = 1× θ = θ.

Therefore, the linearized equation of motion is

J θ̈ +
MgL

2
θ = T ⇒ Js2Θ(s) +

MgL

2
Θ(s) = T (s).

T
T

θ θθ

Mg

Mg

Mg sin θ

Mg cos θ

J d
2θ

dt2
MgL sin θ
2

L
2

L
2

Figure by MIT OpenCourseWare.
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Some common nonlinearitie

• Saturation

• Dead zone

Images removed due to copyright restrictions.
Please see Fig. 2.46 in: Nise, Norman S. Control Systems
Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004. F

• Backlash

s

Ωo(s) 0.2083
=

Θo(s)
;

0.2083
=

a

N1

N2

DL

or

JL

Vs(s) s+ 1.71 Vs(s) s (s+ 1.71)

Ja, D

Mot

Motor loading

Motor loaded with gears

vb(t)ea(t)

ia(t)

Tm(t)
θm(t)

Ra = 8ΩLa 

+

-

+

-

Armature
circuit

Rotor

Figure by MIT OpenCourseWare.

Motor circuit
Km = 0.5N ·m/
Kb = 0.5V · sec/ra

Tm(t) θm(t)

Jm

Dm
y MIT OpenCourseWare.

N1 : N2 = 25 : 250

X
Kb = 0.5V · sec

Case study: motor with gear load

A
d

igures b

/rad

N1 : N2 = 25 : 250
Ja = 0.02kg ·m2

JL = 1kg ·m2

Da = 0.01kg ·m
2/sec

DL = 1kg ·m2/sec
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Saturation

System TF

0.2083

s+ 1.71

Input Step function

u(t)↔
1

s

Images removed due to copyright restrictions.

 Please see Fig. 4.29 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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Dead zone

System TF

0.2083

s (s+ 1.71)

Input Sinusoid

5 sin (2πt) u(t)

Images removed due to copyright restrictions.

 Please see: Fig. 4.30 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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Backlash

System TF

0.2083

s (s+ 1.71)

Input Sinusoid

5 sin (2πt) u(t)

Images removed due to copyright restrictions.

 Please see: Fig. 4.31 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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Case study solution \1: electro-mechanical model
Motor circuit

Recall DC motor equations
(in the Laplace domain)

Tm(s) = KmIa(s);

Vb(s) = KbΩm(s).

Since ωm(t) = ˙θm(t)⇔ Ωm(s) = sΘm(s),
we can rewrite the second motor equation as

Vb(s) = sKbΘm(s).

To find an equation relating the source Ea(s)
to the motor output angle Θm(s),

we must relate the source Ea(s) to the torque Tm(s),
and the torque Tm(s) to the angle Θm(s).

KVL around the DC motor circuit loop
(neglecting the inductance La) yields

RaIa(s) + Vb(s) = Ea(s).

Substituting Ia, Vb from the motor equations,

Ra
Tm(s)

Km
+KbsΘm(s) = Ea(s).

Assume an equivalent load of inertia Jm and
damping Dm, subject to the motor’s torque Tm(s).

Torque balance on this system yields

Tm(t) = Jmθ̈m(t) +Dmθ̇m(t)⇒

Tm(s) = Jms
2Θm(s) +DmsΘm(s).

Substituting into the electrical equation from above,·
Ra
Km

¡
Jms

2 +Dms
¢
+Kbs

¸
Θm(s) = Ea(s)

 

Tm(t) θm(t)

Jm

DmFigures by MIT OpenCourseWare.

vb(t)ea(t)

ia(t)

Tm(t)
θm(t)

Ra = 8ΩLa 

+

-

+

-

Armature
circuit

Rotor

Figures by MIT OpenCourseWare.

X
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Case study solution \2: load model
Recalling the gear loading relationships from lecture 2,

Jm = Ja +

µ
N1
N2

¶2
JL; Dm = Da +

µ
N1
N2

¶2
DL.

Also note that the load shaft angle is related to the
motor shaft angle via

Θo(s) =

µ
N1
N2

¶
Θm(s).

After substituting the numerical values, we find
that the transfer function is of the form

Θm(s)

Ea(s)
=

K

s (s+ p)
=

0.2083

s (s+ 1.71)
,

where the system gain K = 0.2083rad/
¡
V · sec2

¢
and the system pole p = −1.71Hz.

The extra s in the transfer functions’ denominator
indicates that the system includes an integrator.

We can also obtain the TF for Ωo(s) = sΘo(s)

Ωm(s)

Ea(s)
=

K

s+ p
=

0.2083

s+ 1.71
.

The last equation from the previous page
can be rearranged and rewritten as a transfer function

Θm(s)

Ea(s)
=

Kt

RaJm

s

"
s+

1

Jm

Ã
Dm +

KmKb

Ra

!#

We must now relate the equivalent loads Jm, Dm
to the actual load that consists of the motor’s own

armature inertia Ja and compliance Da,
as well as the load’s inertia JL and compliance DL.
The load is connected to the motor via a gear—pair

of ratio N1 : N2.

Motor loaded with gears N1 : N2 = 25 : 250
Ja = 0.02kg ·m2

JL = 1kg ·m2

Da = 0.01kg ·m
2/sec

DL = 1kg ·m2/sec

Ja, Da

N1

N2

DL

Motor

JL

Figures by MIT OpenCourseWare.
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Case study solution \3: torque-speed curve
Recall the relationship we obtained from KVL

and the motor equations,

Ra
Km

Tm(s) +KbsΘm(s) = Ea(s)⇒

Ra
Km

Tm(s) +KbΩm(s) = Ea(s).

Inverse Laplace—transforming,

Ra
Km

Tm(t) +Kbω(t) = ea(t)⇒

Tm = −
KbKm

Ra
ωm +

Km

Ra
ea.

This relationship on the ωm − Tm plane represents
a straight line called torque—speed curve,
with slope −KbKm/Ra and offset Km/Ra.

ωm = 0⇔ Tstall =
Km

Ra
ea Stall torque;

Tm = 0⇔ ωno−load =
ea
Kb

No—load speed.

vb(t)ea(t)

ia(t)

Tm(t)
θm(t)

Ra = 8ΩLa 

+

-

+

-

Armature
circuit

Rotor

Figures by MIT OpenCourseWare.

Images removed due to copyright restrictions. 

Please see: Fig. 2.38 in Nise, Norman S. 

Control Systems Engineering. 4th ed. 

Hoboken, NJ: John Wiley, 2004.
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