So far

* First-order systems (linear)
o Second-order systems (linear)

Today

* Higher-order systems (linear)
— when can we approximate as second-order?
* Nonlinear systems
— Review of cases we've seen
— Linearization
 Example: pendulum
— DC motor nonlinearities

 Example: load connected with gears; saturation, dead zone,
backlash
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The effect of multiple poles

C(s) = é—l—

S

B (s + Cwy) + Cwy N
(s+ Cwn)z + wg
D

s+,

Images removed due to copyright restrictions.

Please see: Fig. 4.23 and 4.24 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004,
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Linear vs Nonlinear (revisited)

. . tf ()
Linear spring:
fx(t)) = Kx(t)
K = slope
x(t)
A f(t)
v(t) = x(t)
Viscous friction: § fv

fo(t)) = = foo(t)

. 1@ /

Nonlinear spring:
f(z(t)) = K(z)z(t)

, K (22)

K(z1) .

6w ox(t)
tf ()
fe
v(t) = x(t)

Coulomb friction: f(z(t)) = —f.sgn (z(t))
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Linear vs Nonlinear (revisited)

f(x) J(x)
A e.g., linear spring A e.g., nonlinear spring
5 2L 221
£ £
= =
S 1L S 1L
| | | L x | | | | -y
0 1 2 3 1 0 1 2 3 1
Input Input
Linear system: f(z(t)) = kx(t) Nonlinear system f(a( )) 75 kx(t)
e.g., f(z(t)) = k/x(

Consider linear combination of inputs
Consider same linear combination of inputs
a121(t) + asxo(t)

alxl(t) + asxo (t)
Then output is same

linear combination of outputs Then output is not the same

linear combination of outputs
f (a1£131 (t) + a9 (t)) =k (alwl(t) + a2 (t)) =

ar (kz1(t)) + az (kz2(t)) = arf (z1(t)) + aof (z2(1)).

f (alzz:l(t) + CL2£E2(t)> = k\/(a1$1(t) + CLQZEQ(t)) 75

ai/ k?.il?l(t) + as+/ kil?g(t) = alf (a:l(t)) + a2f (.562(75)) .
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Linearization

£() 8f (x)
N A
R (6) pravatereatanes i
4 ] . ctions.
g f(ry) p—t—t- . x Images rem(?ved due to copyr.lght .I'GStI'ICtIOI’lS . ‘
g } Please see Fig. 2.48 and 4.24 in Nise, Norman S. Control Systems Engineering.
© 7] { ! 4th ed. Hoboken, NJ: John Wiley, 2004.
> X
0 X, X
Input

Figure by MIT OpenCourseWare.

Example
Linearize f(x) = 5cosx near z = 7 /2.
Answer: We have f(7/2) =0, m, = —5, so

f(z) = f(x0) +ma (z — o)

where
af fa)x—5(z=5)  (@~m/2)
-

=X

Mq
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Linearizing systems : the pendulum

Mg

Figure by MIT OpenCourseWare.
The equation of motion is found as

Jh+ 29

sinf =T. (We cannot Laplace transform!)

For small angles 6 ~ 0, we have

dsin @
do  |,_,

sin § ~ X0 =cosl,_,x0=1x60=80.

Therefore, the linearized equation of motion is

. MgL MgL
JH—l—Tg :T:>J32@(s)+Tg (s) = T(s).
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Some common nonlinearities <Case study: motor with gear load

e Saturation

e Dead zone

Images removed due to copyright restrictions.
Please see Fig. 2.46 in: Nise, Norman S. Control Systems
Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

« Backlash

— X R,=8Q
+ MUU "V 4| Rotor
f) Armature
eall) circuit )vb(t) 4%
i)
o - h
T(0)
0,,(1)

Motor circuit

K,, =05N-m/A
K, = 0.5V - sec/rad
K = 0.5V - sec/rad

Figure by MIT OpenCourseWare.

Motor loading

Tn@®) 6,,(0)

Figures by MIT OpenCourseWare.

Jm
Dy,

Motor loaded with gears

N12N2:252250

Motor N,

J,. D,
Dy,

J, = 0.02kg - m?
Jr, = 1kg - m?
D, = 0.01kg - m? /sec
Dy, = 1kg - m? /sec

0.2083

O,(s)

0.2083

s+ 171

Vi(s)

s(s+1.71)
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Saturation

Images removed due to copyright restrictions.

Please see Fig. 4.29 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

System TF

0.2083
s+ 1.71

Input Step function

u(t) & é
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Dead zone

Images removed due to copyright restrictions.

Please see: Fig. 4.30 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

System TF

0.2083
s(s+1.71)

Input Sinusoid

5sin (27t) u(t)
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Backlash

Images removed due to copyright restrictions.

Please see: Fig. 4.31 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004,

System TF

0.2083
s(s+1.71)

Input Sinusoid

5sin (27t) u(t)
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Case study solution \1: electro-mechanical model

Motor circuit KVL around the DC motor circuit loop

. R, -0 (neglecting the inductance L,) yields

Rotor
* H RoI,(s) + Vi(s) = Eu(s).

e Armatu . . .
”(ti) circuit re>vb(t) Vi Substituting I,, V; from the motor equations,
it
o - N T, . (s

T, (1) R, m(3) + Kp$0,,(s) = Eu(s)-
0,(2) K,,
Recall DC motor equa tions Figures by MIT OpenCourseWare. 0 6.0
(in the Laplace domain) 5
) )
Tm (3) = K m I o ( 3>’ Figures by MIT OpenCourseWare. Dy,
‘/b(s) - Kme(S)'

Assume an equivalent load of inertia J,,, and
damping D,,, subject to the motor’s torque T;,(s).

Since wy, (1) = 0,,(t) < Q. (s) = $O,,(s :
(®) (t) (s) (5) Torque balance on this system yields

we can rewrite the second motor equation as

T(t) = T (t) + Db (t) =
Vi(s) = sKpOm(s). T(s) = Jns?0,,(5) + DyysO,,(s).
To find an equation relating the source Eq(s) Substituting into the electrical equation from above,
to the motor output angle ©,,(s),
we must relate the source E,(s) to the torque T, (s), R, 9
and the torque T;,(s) to the angle ©,,(s). K, (Jms® + Dims) + Kps | Om(s) = Ea(s)
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Case study solution \2: load model

Motor loaded with gears Ny : Ny = 25:250

J, =0.02kg - m? Recalling the gear loading relationships from lecture 2,
JL = 1kg . IIl2
D, = 0.01kg - m? /sec 7 7 Ny 2J D D Ny 2D
Dy = 1kg - 2 m — Ya - 7 m — a AT .
Motor N; g g /sec * <N2> t - (N2) t
Yo e Also note that the load shaft angle is related to the
N, 6) F motor shaft angle via
"Dy N
0,(5) = [ = | Om(s).
Figures by MIT OpenCourseWare. (S) < . 2 ) <S)
The last equation from the previous page After substituting the numerical values, we find
can be rearranged and rewritten as a transfer function that the transfer function is of the form
K
- } Om(s) K 02083
Om(s) _ a7m E.(s) s(s+p) s(s+1.71)
EG(S) 1 Kme
s|s+ I D, + R, where the system gain K = 0.2083rad/ (V - sec?)

and the system pole p = —1.71Hz.
The extra s in the transfer functions’ denominator

indicates that the system includes an integrator.
We can also obtain the TF for ©,(s) = s©,(s)

We must now relate the equivalent loads J,,, D,,
to the actual load that consists of the motor’s own
armature inertia J, and compliance D,,

as well as .the load’s inertia J;, and cqmphance D L- Q0 (5) K 02083
The load is connected to the motor via a gear—pair 7 — _ T
of ratio Ny : Ns. a(8) s+p s+1.7

H
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Case study solution \3:

X R-=80

ST

+ +

e, (1) Anna}ture V()
circuit
ig(?)

(e . N
Ty(®
0(0)

Figures by MIT OpenCourseWare.

Rotor

i

Images removed due to copyright restrictions.

Please see: Fig. 2.38 in Nise, Norman S.
Control Systems Engineering. 4th ed.
Hoboken, NJ: John Wiley, 2004.

torgue-speed curve

Recall the relationship we obtained from KVL
and the motor equations,

R,
K—me(s) + Kps0,,(s) =

m

Inverse Laplace—transforming,

Rq

e T (t) + Kpw(t) = e4(t) =
KyK,, K,

Tm = — bRa Wm R—aea.

This relationship on the w,, — T}, plane represents

a straight line called torque—speed curve,
with slope —K,K,,/R, and offset K,,/R,.

e, Stall torque;

a

Wm = 0 & Tstall —

€a
Tm =0« Wno—load = 5
Ky

No—load speed.
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