Summary from previous lecture

» Laplace transform

+o00
L) = F(s) = / et

» Transfer functions and impedances

f@) | z(t) T,(s) ‘I“Z Q(s)
0 X (s) '

TF(s) =
F(s) X(s) F(s) TR(s) = 28 _ 1
— — () = T.(s) Js+b
S) = _ . — h —
X(S) ZJ == JS, Zb = b, TF(S) = ZJ N Zb
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Goals for today

Dynamical variables in electrical systems:

— charge,

— current,

— voltage.

Electrical elements:

— resistors,

— capacitors,

— inductors,

— amplifiers.

Transfer Functions of electrical systems (networks)
Next lecture (Friday):

— DC motor (electro-mechanical element) model
— DC motor Transfer Function

Ill.l- 2.004 Fall '07 Lecture 04 — Wednesday, Sept. 12



Electrical dynamical variables: charge, current, voltage

charge ¢ Coulomb [CD]
charge flow = current ¢(t)  Ampére [A|=|Cb]/|sec]
voltage (aka potential) v(t) Volt [V]
A= <=0 "0 < v(t) > O
Vo0 o
=0 0= e
dq(t)
<:'@ @':> Z(t) — F
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Electrical resistance

o< v(t) >0

( ®/0@\0 ®\0

-~

o0
.@”o@”o .‘ o®#0®/"

i(t) =>

« Collisions between the mobile charges and the material fabric (ions,
generally disordered) lead to energy dissipation (loss). As result,
energy must be expended to generate current along the resistor;
i.e., the current flow requires application of potential across the

resistor
v(t) = Ri(t) = V(s) = RI(s) = ‘;((5))

« The quantity Zz=R is called the resistance (unit: Ohms, or Q)
« The quantity Gg=1/R is called the conductance (unit: Mhos or Q)

:REZR
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Capacitance

+

O < v(t) -0

© i(t) =>

@A (3 r
Toh--0-T)

+
P

electrode @“@ _ electrode
(conductor) (+)/ dielectric @\ - (conductor)

(insulator)
« Since similar charges repel, the potential v is necessary to prevent
the charges from flowing away from the electrodes (discharge)

« Each change in potential v(t+At)=v(t)+Av results in change of the
energy stored in the capacitor, in the form of charges moving
to/away from the electrodes (< change in electric field)
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Capacitance

+O<

electrode electrode
(conductor) (conductor)
do(t
- Capacitance C: =i(t)=C Zi )
V(s 1
« in Laplace domain: I(s) = CsV(s) = I((3)> = Zco(s) = o
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Inductance

« Current flow i around a loop results in magnetic field B pointing
normal to the loop plane. The magnetic field counteracts changes in
current; therefore, to effect a change in current i(t+At)=i(t)+Ai a
potential v must be applied (i.e., energy expended)

di(t)
dt

* Inductance L: wv(t) = L

» in Laplace domain: V' (s) = LsiI(s) =
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Summary: passive electrical elements; Sources

Table removed due to copyright restrictions.

Please see: Table 2.3 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.

Electrical inputs: voltage source, current source Ground:
potential reference
Voltage source: Current source:
v(t) independent i(t) independent v(t) =0
of current through. of voltage across. always
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Combining electrical elements: networks

+
i =1-u(t) D ——IF

v

Courtesy of Prof. David Trumper. Used with permission.

Network analysis relies on two physical principles

* Kirchhoff Current Law (KCL)
— charge conservation

11

« Kirchhoff Voltage Law (KVL)

— energy conservation

+—
|
H

_;I’

s

1
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Impedances in series and in parallel

Il IZ ] —
 —— 7  ———
~ 2 2 - Zi 1+ Zy | +
F V- 4T, - Ill Vi -721 Vs
e Vv my
Impedances in series Impedances in parallel
KCL: I1:IQEI KCL1211+IQ
KVL: V =V, + V5. KVL: Vi + Vo, =V,
From definition of impedances: From definition of impedances:
Vi Vo Vi Vo
Z1 = —; Ly = —. Z1 = —; Ly = —.
1 1—1 ) 2 12 1 Il ) 2 I2
Therefore, equivalent circuit has Therefore, equivalent circuit has
1 1 1 1 1 1
Z=I+% (o ==—+_—. — =t (©G=C1+G)
1+2( G G1+G2) Z~ 7. 7 L
7z —1 7z —1
—O O —O
!:+ V _:! !:+ V _:!
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The voltage divider
Z

Equivalent circuit for computing the current I.

Since the two impedances are in series, they combine to an equivalent impedance
4 =71+ Zs.

The current flowing through the combined impedance is

v
I= A Block diagram & Transfer Function
Therefore, the voltage drop across Zs is ‘/z 7 V2
2
V Vs Zo g g
Vo= Zol = Zopoo = ~2 = — 22 Zy + Z
2 2 27 V. 71+ 7, 1+ 42
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Example: the RC circuit

Z1 =R
+ /\/\/\/ + Block diagram & Transfer Function
1 .
v, Z2= G, T /° i1 e
_ 5 _ 1+ RCs

We recognize the voltage divider configuration, with the voltage across the ca-
pacitor as output. The transfer function is obtained as

_ Ve (s) 1/C's 1 1

TF — = =
(5) Vi(s) R+1/Cs 1+RCs 1+7s’

where 7 = RC. Further, we note the similarity to the transfer function of the
rotational mechanical system consisting of a motor, inertia J and viscous friction
coefficient b that we saw in Lecture 3. [The transfer function was 1/b(1 4 7s),
i.e. 1identical within a multiplicative constant, and the time constant 7 was
defined as J/b.] We can use the analogy to establish properties of the RC
system without re—deriving them: e.g., the response to a step input V; = Vou(t)
(step response) is

Ve(t) =Vo (1 — e_t/T> u(t), where now 7 = RC.
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Interpretation of the RC step response
Z1=R

Vo(t) = Vo (1—e~"7) u(t), 7=RC.

Vo=1Volt R=2kQ C=1uF

1

Charging of a capacitor:
becomes progressively more
difficult as charges accumulate.
Capacity (steady-state) is reached
asymptotically (V.—V, as t—x)

0.632

Ve (t) [Volts]

0 2 4 6 8 10
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Example: RLC circuit with voltage source

v(?)

_:_ ve(?)

+

O

Figure 2.3

Figure by MIT OpenCourseWare.

V(s

i
L
H
)C;

(5)  Vals)

——

_.l

S R

s)

Vls)

Figure 2.4

Figure by MIT OpenCourseWare.
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Example: two-loop network

Images removed due to copyright restrictions.

Please see: Fig. 2.6 and 2.7 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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The operational amplifier (op-amp)

otV

+v1(9) -

Z1(s)

vo(d)
+5(f) 4 %0

Vi(s) A A 5

—_—

Ii(s)

Vi(s)

e

v1(9)

Z5(s)

< I(s)

Vo(s)

vo(?)

Figure 2.10

Figure by MIT OpenCourseWare.

(a) Generally, v, = A (ve — v1),
where A is the amplifier gain.

(b) When vs is grounded, as is often
the case in practice, then v, = —Av;.
(Inverting amplifier.)

(c) Often, A is large enough that
we can approximate A — oo.

Rather than connecting the input directly,
the op—amp should then instead be used in the
feedback configuration of Fig. (c).

We have:

Vl = 0; Ia =0
(because V, must remain finite) therefore
Iy + I, = 0;

Vi—Vi =V, =117y;
VO —Vl — VO :IQZQ.

Combining, we obtain
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