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Summary from last week

• Linear systems

a2x2(t)

• Translational & rotational mechanical elements & systems

x1(t)f1(t) x2(t)f2(t)
a1f1(t)+
a2f2(t)

• Solving 1st order linear ODEs with constant coefficients
Jω̇ + bω = T0u(t), ω(0) = ω0 ⇒

ω(t) = ω0e
−t/τ T0

+ 1
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³
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´
where τ ≡

T
ω(∞

0
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b

b
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Goals for today

• Solving linear constant-coefficient ODEs using Laplace transforms
– Definition of the Laplace transform
– Laplace transforms of commonly used functions
– Laplace transform properties

• Transfer functions
– from ODE to Transfer Function

• Transfer functions of the translational & rotational mechanical 
elements that we know

• Next lecture (Wednesday):
– Electrical elements: resistors, capacitors, inductors, amplifiers
– Transfer functions of electrical elements

• Lecture-after-next (Friday):
– DC motor (electro-mechanical element) model 

and its Transfer Function
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Laplace transform: motivation

• Simplifies solution
• s-domain offers additional insights
• particularly useful in control

From ODE (linear, constant coefficients, any order) …

Mẍ(t) + fvẋ(t) +Kx(t) = f(t)

… to an algebraic equation

Ms2X(s) + fvsX(s) +KX(s) = F (s)

Benefits:

input, output expressed as functions of time t

input, output expressed as functions of new variable s
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Laplace transform: definition

Given a function f(t) in the time domain we define its
Laplace transform F (s) as

F (s) =

Z +∞

0−
f(t)e−stdt.

We say that F (s) is the frequency—domain representation of f(t).

The frequency variable s is a complex number:

s = σ + jω,

where σ, ω are real numbers with units of frequency (i.e. sec−1 ≡Hz).

We will investigate the physical meaning of σ, ω later when we see examples of
Laplace transforms of functions corresponding to physical systems.
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Example 1: Laplace transform of the step function

Consider the step function (aka Heaviside function)

u(t) =

½
0, t < 0,
1, t ≥ 0.

According to the Laplace transform definition,

U(s) =

Z +∞

0−
u(t)e−stdt =

Z +∞

0−
1 · e−stdt =

=

µ
1

−s
e−st

¶¯̄̄̄+∞
0−

=
1

−s

³
0− 1

´
=

=
1

s
.
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Interlude: complex numbers: what does 1/s mean?

Recall that s = σ + jω. The real variables σ, ω (both in frequency units)
are the real and imaginary parts, respectively, of s. (We denote j2 = −1.)

Therefore, we can write

1

s
=

1

σ + jω
=

σ − jω

(σ + jω) (σ − jω)
=

σ − jω

σ2 + ω2
.

Alternatively, we can represent
the complex number s in polar form s = |s| ejφ,

where |s| =
¡
σ2 + ω2

¢1/2
is the magnitude and

φ ≡ 6 s = atan (ω/σ) the phase of s.

It is straightforward to derive

φ

|s|

σ

jω

s

1

s
=
1

|s|
e−jφ ⇒

¯̄̄̄
1

s

¯̄̄̄
=
1

|s|
and 6 1

s
= − 6 s. −s
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Example 2: Laplace transform of the exponential

Consider the decaying exponential function beginning at t = 0

f(t) = e−atu(t),

where a > 0 (note the presence of the step function in the above formula.)

Again we apply the Laplace transform definition,

F (s) =

Z +∞

0−
e−atu(t)e−stdt =

Z +∞

0−
e−(s+a)tdt =

=

µ
1

−(s+ a)
e−(s+a)t

¶¯̄̄̄+∞
0−

=
1

−(s+ a)

³
0− 1

´
=

=
1

s+ a
.
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Laplace transforms of commonly used functions

Nise Table 2.1

Step
function

(aka
Heaviside)

time constant

τ =
1

a
, a = 1 sec−1

f(t)

δ(t)

sin ωtu(t)

cos ωtu(t)

u(t)

tu(t)

tnu(t)

e-atu(t)

F(s)

s2 + ω2
s

s2 + ω2
ω

s + a
1

sn + 1
n!

s2
1

1

s
1

Figure by MIT OpenCourseWare.
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Laplace transforms of commonly used functions

Nise Table 2.1

Ramp
function

Quadratic
function
n = 2

Polynomials

f(t) F(s)

δ(t)

u(t)

tu(t)

tnu(t)

e-atu(t)

sin ωtu(t)

s
cos ωtu(t)

s2 + ω2

ω
s2 + ω2

1
s + a

n!
sn + 1

1
s2

1

1
s

Figure by MIT OpenCourseWare.
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Nise Table 2.1

f(t)

δ(t)

sin ωtu(t)

cos ωtu(t)

u(t)

tu(t)

tnu(t)

e-atu(t)

F(s)

s2 + ω2
s

s2 + ω2
ω

s + a
1

sn + 1
n!

s2
1

1

s
1

Figure by MIT OpenCourseWare.

Laplace transforms of commonly used functions
Sinusoids
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Laplace transforms of commonly used functions
Impulse function (aka Dirac function)

t

δ(t)

t = 0
It represents a pulse of

• infinitessimally small duration; and

• finite energy.

Mathematically, it is defined by the propertiesZ +∞
δ(t) = 1; (unit energy) and

−∞Z +∞
δ(t)f(t) = f(0) (sifting.)

f(t)

δ(t)

sin ωtu(t)

cos ωtu(t)

u(t)

tu(t)

tnu(t)

e-atu(t)

F(s)

s2 + ω2
s

s2 + ω2
ω

s + a
1

sn + 1
n!

s2
1

1

s
1

Figure by MIT OpenCourseWare.
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Properties of the Laplace transform

• Linearity

• Differentiation

• Integration

Let F (s), F1(s), F2(s) denote the Laplace transforms of f(t), f1(t), f2(t),
respectively. We denote L [f(t)] = F (s), etc.

L [K1f1(t) +K2f2(t)] = K1F1(s) +K2F2(s),
where K1, K2 are complex constants.

• L
h
df(t)
dt

i
= sF (s)− f(0−);

• L

·
d2f(t)
dt2

¸
= s2F (s)− sf(0−)− ḟ(0); and

• L
h
dnf(t)
dtn

i
= snF (s)−

Pn
k=1 s

n−kf (k−1)(0−).

L

·Z t

0−
f(ξ)dξ

¸
=
F (s)

s
.

The differentiation property is the one
that we’ll find most useful in
solving linear ODEs with constant coeffs.

A more complete set of Laplace transform properties
is in Nise Table 2.2.
We’ll learn most of these properties in later lectures.
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Inverting the Laplace transform
Consider

F (s) =
2

(s+ 3)(s+ 5)
. (1)

We seek the inverse Laplace transform f(t) = L−1 [F (s)] :i.e., a function f(t)
such that L [f(t)] = F (s).

Let us attempt to re—write F (s) as

F (s) =
2

(s+ 3)(s+ 5)
=

K1

s+ 3
+

K2

s+ 5
. (2)

That would be convenient because we know the inverse Laplace transform of
the 1/(s + a) function (it’s a decaying exponential) and we can also use the
linearity theorem to finally find f(t). All that’d be left to do would be to find
the coefficients K1, K2.

This is done as follows: first multiply both sides of (2) by (s+ 3). We find

2

s+ 5
= K1 +

K2(s+ 3)

s+ 5

s=−3
=⇒ K1 =

2

−3 + 5
= 1.

Similarly, we find K2 = −1.
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Inverting the Laplace transform
So we have found

F (s) =
2

(s+ 3)(s+ 5)
=

1

s+ 3
−

1

s+ 5
.

From the table of Laplace transforms (Nise Table 2.1) we know that

L−1
·
1

s+ 3

¸
= e−3tu(t) and

L−1
·
1

s+ 5

¸
= e−5tu(t).

Using these and the linearity theorem we obtain

L−1 [F (s)] = L−1
·

2

(s+ 3)(s+ 5)

¸
= L−1

·
1

s+ 3
−

1

s+ 5

¸
= e−3t − e−5t.

The process we just followed is known as partial fraction expansion.
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Use of the Laplace transform to solve ODEs

• Example: motor-shaft system from Lecture 2 (and labs)

Ts(t) ω(t)

J

b

J ω̇(t) + bω(t) = Ts(t),

where Ts(t) = T0u(t) (step function)

and ω(t = 0) = 0 (no spin—down).

Taking the Laplace transform of both sides,

JsΩ(s) + bΩ(s) =
T0
s
⇒ Ω(s) =

T0
b

1

s
³
(J/b)s+ 1

´ = T0
b

1

s(τs+ 1)
,

where τ ≡ J/b is the time constant (see also Lecture 2).

We can now apply the partial fraction expansion method to obtain

Ω(s) =
T0
b

µ
K1

s
+

K2

τs+ 1

¶
=
T0
b

µ
1

s
−

τ

τs+ 1

¶
=
T0
b

µ
1

s
−

1

s+ (1/τ)

¶
.
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Use of the Laplace transform to solve ODEs

• Example: motor-shaft system from Lecture 2 (and labs)

Ts(t) ω(t)

J

b

J ω̇(t) + bω(t) = Ts(t),

where Ts(t) = T0u(t) (step function)

and ω(t = 0) = 0 (no spin—down).

We have found

Ω(s) =
T0
b

µ
1

s
−

1

s+ (1/τ)

¶
.

Using the linearity property and the table of Laplace transforms we obtain

ω(t) = L−1 [Ω(s)] =
T0
b

³
1− e−t/τ

´
,

in agreement with the time—domain solution of Lecture 2.



Lecture 03 – Monday, Sept. 102.004 Fall ’07 

Transfer Functions

• Consider again the motor-shaft system :

Ts(t) ω(t)

J

b

J ω̇(t) + bω(t) = Ts(t),

where now Ts(t) is an arbitrary function,

but still ω(t = 0) = 0 (no spin—down).

Proceeding as before, we can write

Ω(s) =
Ts(s)

Js+ b
⇔
Ω(s)

Ts(s)
=

1

Js+ b
.

Generally, we define the ratio

L
h
output

i
L
h
input

i = Transfer Function; in this case, TF(s) =
1

Js+ b
.

We refer to the (TF)
−1
of a single element as the Impedance Z(s).
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Transfer Functions in block diagrams

R(s) C(s)
Transfer Function(s) :=

C(s)

R(s)
.

Ts(s) Ω(s)
J

b

TF(s) :=
Ω(s)

Ts(s)
= 1
Js+ b

.

Important: To be able to define the Transfer Function,
the system ODE must be linear with constant coefficients.

Such systems are known as Linear Time-Invariant,
or Linear Autonomous.
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Impedances: rotational mechanical

(In the notes,
we sometimes
use b or B

instead of D.)

Table removed due to copyright restrictions. 

Please see: Table 2.5 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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Impedances: translational mechanical

(In the notes,
we sometimes
use b or B

instead of fv.)

Table removed due to copyright restrictions.

Please see Table 2.4 in Nise, Norman S. Control Systems Engineering. 4th ed. Hoboken, NJ: John Wiley, 2004.
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Transfer Functions: multiple impedances
System ODE: Mẍ(t) + fvẋ(t) +Kx(t) = f(t).

Impedances X(s) = Forces .
£P ¤ £P ¤

1

Ms2 + fvs + K
F(s) X(s)

Figures by MIT OpenCourseWare.

Figures by MIT OpenCourseWare.

M

x(t)

fv

f(t)

K

M

x(t)

Kx(t)

f(t)dx
dtfv

d2x
dt2

M

M

x(t)

KX(s)

f(t)fvsX(s)

Ms2X(s)
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Summary

• Laplace transform

• Transfer functions and impedances

L [f(t)] ≡ F (s) =

Z +∞

0−
f(t)e−stdt.

L [u(t)] ≡ U(s) =
1

s
.

L
£
e−at

¤
=

1

s+ a
.

L
h
ḟ(t)

i
= sF (s)− f(0−).

L

·Z t

0−
f(ξ)dξ

¸
=
F (s)

s
.

J θ̈(t) = T (t)⇒ ZJ = Js
2; fv θ̇(t) = T (t)⇒ Zfv = fvs; Kθ(t) = T (t)⇒ ZK = K.

J ω̇(t) + bω(t) = Ts(t)
L
=⇒ (Js+ b)Ω(s) = Ts(s)⇒

Ω(s)

Ts(s)
≡ TF(s) =

1

Js+ b
.

Mẍ(t) + fvẋ(t) +Kx(t) = f(t)⇒
X(s)

F (s)
≡ TF(s) =

1

Ms2 + fvs+K
.
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