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Massachusetts Institute of Technology

Department of Mechanical Engineering


2.004 Dynamics and Control II 

Laboratory Session 5:

Elimination of Steady-State Error Using Integral Control Action1


Laboratory Objectives: 

(i)	 To investigate the elimination of steady-state error through the use of integral (I), and 
proportional plus integral (PI) control. 

(ii) To compare your experimental results with a Simulink digital simulation. 

Introduction: In the previous laboratory experiments you have noted that there was a 
steady-state error to a constant angular velocity command, and that the error magnitude 
depended on the degree of viscous damping present. In many control problems it is desirable 
to eliminate the steady-state error, and the most common way of doing this is through the 
use of integral control action and proportional plus integral (PI) control. 

A PI controller has a transfer function 

1 
Gc(s) = Kp + Ki 

s 

with a block-diagram 
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and a time domain response 

t 
vc(t) = Kpe(t) + Ki e(t)dt 

0 

where vc(t) is the controller output. A description of how the integral component acts to 
eliminate steady-state error is given in Appendix A. Please take a few minutes to read 
through and understand the Appendix. 
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The Experimental Setup: The set-up is the same as in Lab. 4, using the 2.004 PID 
Controller as shown below: 

Use the tachometer low-pass filter as you did in Lab 4. In this lab, in addition to proportional 
control you will be using integral control, adjusted by the knob labelled Int. Gain (Ki) on 
the front panel. In digital control systems such as this, real-time integration is done through 
an approximate numerical algorithm, such as rectangular integration, where the integral is 
represented as a sum sn 

sn = sn−1 + enΔT 

where en is the error at the nth iteration, and ΔT is the time step, or trapezoidal integration 

sn = sn−1 + (en−1 + en) ΔT/2 

Experiment #1: Verification of Integrator Performance Verify that the integrator 
is functioning correctly using the following steps: 

(a)	 Connect the computer-based controller, but keep the power amp turned off for all parts 
of this experiment. 

(b)	 Set the function generator to produce a step (square) function of amplitude 1 volt, at a 
frequency of 1 Hz. 

(c)	 Open the controller, and select a sampling rate of 100 samples/sec. (Maintain this value 
for all parts of the lab.) 

(d)	 Set Kp = 0 and Ki = 1 on the front panel. Start the controller and observe the error 
trace. (If the tachometer is noisy, you might want to disconnect it and ground the 
input). Visually confirm that the error trace is the integral of the input. Either save 
and plot the output, or make a sketch of it. 

(e) Add a 0.5 volt offset to the square wave and repeat part (d). 

(f)	 Now set a 1 Hz. triangular wave (no offset) on to the function generator and repeat the 
experiment. 

Experiment #2: Proportional Control Obtain a “baseline” step response with pro­
portional control. Basically repeat the Lab. 4 step response measurement to demonstrate 
the existence of the steady-state error: 
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(a)	 Set Kp = 3, and Ki = 0, with a sampling rate of 100 samples/second. Install one 
damping magnet. 

(b) Set the function generator to produce a DC signal of 1 volt magnitude. 

(c) Record and plot the closed-loop step response, and measure the steady-state error. 

Experiment #3: Pure Integral Control 

(a)	 Now investigate pure integral control by repeating Expt. #2 with Kp = 0, and Ki = 3 
so that 

3 
Gc(s) = . 

s 
When using integral control, make sure that the power amp is turned on before starting 
the controller. This avoids the problem of “integrator wind-up.” 

Has integral control helped with the steady-state error? Can you tell? What has 
happened to the transient response? Plot your results. 

(b) Remove the damping magnet and repeat part (a). Is the response “better” or “worse”. 

Discuss your results with your lab instructor. Look at the closed-loop characteristic equation 
from Appendix A, and discuss how the closed-loop roots are affected by the values of B and 
Ki. In particular, think about what happens to the closed-loop if the viscous damping B = 0. 

Experiment #4: PI Control: In this experiment, use PI Control, that is with 

1 Kps + Ki s + Ki/Kp
Gc(s) = Kp + Ki = = Kp

s s	 s 

(a)	 Start with Kp = 3, Ki = 1, and a single magnet for damping. Use the same function 
generator settings, and record and save the step response. (Note – use the pan and 
zoom tools to select a complete positive step section of the response before saving it 
to MATLAB.) Is the response more satisfactory? 

(b)	 Repeat (a) with Ki = 5 and 10. In each case save the response to MATLAB, and make 
a plot of the positive step response. 

(c)	 Qualitatively examine the effect of integral control by using a finger to add a constant 
disturbance torque to the flywheel. Observe the controller output (blue/grey trace). 
Make a note of what happens. 

Compare your three plots. Briefly describe how the value of Ki has affected 1) any “over­
shoot” in the step response, 2) the time to the peak response, and the time to reach the 
steady-state response. 

Experiment #5: Compare your results with a Simulink Simulation: Simulink is 
one of the most widely used computer tools for control system analysis and design. It is an 
integral part of MATLAB, and is a drag-and-drop block-diagram time-domain simulation 
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language. Simulink provides a graphical work-space where you can create very complex sys­
tem models without writing a single line of code. Later in this course we will introduce you 
to programming in Simulink, but for now we provide you with a Simulink model of the lab 
setup and ask you to run it and compare your experimental step-responses with the Simulink 
simulation. 

The figure above shows the ”pre-wired” Simulink simulation for this lab. You can change the 
values of Kp and Ki by double-clicking on the appropriate block and entering the new value. 
You can display the ’scope by double-clicking on the icon, and then resizing the window. 
The input block at the far left is a Simulink step function, so that the simulation will display 
the closed-loop step-response. Many other functions may be found in the “sources” library. 
Three signals are “multiplexed” on to the scope (input, controller output, and tach output). 
In addition, the tach output is connected to a block labelled “simout”. This writes a vector 
named simout to the MATLAB workspace so that you may access the response in MATLAB. 
You can change the name of the MATLAB variable by double clicking on the icon. 

To run the simulation, simply click on the right-arrow in the toolbar. 

(a) The Simulink model is contained in the file PIControl.mdl in the Lab 5 folder of the 
2.004 Course Locker on the lab machines. To run the model, drag the file to your 
desktop or home directory (Z:). Double-click on the file to start MATLAB and open 
the model. 

(b)	 Run the simulation for the case of PI control with Kp = 3, and Ki = 1, 5, 10. Save the 
output to a different variable name in each case. 

(c)	 Compare your experimental and simulated data. If you can, make a single plot for each 
of the three conditions with the real and simulated data. 
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Appendix A: Introduction to Integral Control Action


In the previous labs we have noted that there is a steady-state error in the angular velocity 
of the plant when there is a viscous disturbance torque present. Integral control action is 
very commonly used to eliminate the steady state error. 

Pure Integral Control: Assume that we replace our proportional controller with an 
integrator with gain Ki so that the controller output is 

t 
vc(t) = Ki e(t)dt + vc(0) 

0 
t 

= Ki (r(t) − y(t)) dt + vc(0) 
0 

where e(t) = r(t) − y(t) is the error. For simplicity also assume that vc(0) = 0. 
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Then the transfer function Gc(s) of the controller is 

Ki
Gc(s) = 

s 

The integrator will function as follows: 

•	 If the error e(t) is positive, that is r(t) > y(t), the controller output (and hence the 
torque produced by the motor) will increase at a rate proportional to the error. 

•	 Similarly, if e(t) < 0, the controller output will decrease at a rate proportional to the 
magnitude of the error. 

•	 If the error is zero, the integrator output will be maintained at a constant value. 

The result is that the integrator will continually adjust the motor torque so as to drive the 
error to zero, at which point the supplied torque remains constant. 

Assume that our plant (comprising the Power Amp, Rotational Plant and Tachometer) 
has a transfer function 

Vt(s) KaKmKt/N 
Gp(s) = = 

Vc(s) Js + B 

Then the forward loop transfer function is 

Ki KaKmKt/N 
G(s) = Gc(s)Gp(s) = 

s	
· 

Js + B 
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The closed-loop transfer function is 

Vt(s) G(s)
Gcl(s) = = 

R(s) 1 + G(s) 
KiKaKmKt/N 

= 
Js2 + Bs + KiKaKmKt/N 

For a step input r(t) = A, the final-value theorem states 

A KiKaKmKt/N 
lim vt(t) = lim(sVt(s)) = lim s 
t→∞ s→0 s→0 s Js2 + Bs + KiKaKmKt/N 

= A 

Note that the system has now become second order, and that the steady-state error will be 
zero. 

Proportional plus Integral (PI) Control: Pure integral control is rarely used in 
practice, and you will see why in the course of this lab. PI control, on the other hand, is 
used very often. In PI control, the controller uses a linear combination of proportional and 
integral control actions: 

1 
Gc(s) = Kp + Ki 

s 

= 
Kps + Ki 

s� � 
s + Ki/Kp

= Kp 
s 
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The plant transfer function (comprising the Power Amp, Rotational Plant and Tachometer) 
is 

Vt(s) KaKmKt/N 
Gp(s) = = 

Vc(s) Js + B 

The forward loop transfer function is 

Kps + Ki KaKmKt/N 
G(s) = Gc(s)Gp(s) = 

s 
· 

Js + B 
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The closed-loop transfer function is


Gcl(s) = 
Vt(s) 
R(s) 

= 
G(s) 

1 + G(s) 

= 
(KpKaKmKt/N) s + KiKaKmKt/N 

Js2 + (B + KpKaKmKt/N) s + KiKaKmKt/N 

For a step input r(t) = A, the final-value theorem states 

A (KpKaKmKt/N) s + KiKaKmKt/N 
lim vt(t) = lim(sVt(s)) = lim s 
t→∞ s→0 s→0 s Js2 + (B + KpKaKmKt/N) s + KiKaKmKt/N 

= A 

so that again, the steady-state error is zero. PI control eliminates steady-state error, just 
as does pure I control, but the additional constant Kp enables the system’s damping to be 
specified. 

We note in passing that I control has introduced an open-loop pole at the origin (s = 0), 
and that PI control has introduced a pole at the origin, and an open-loop zero at s = −Ki/Kp. 

Appendix B: The Plant Transfer Function 

In previous labs we found the plant transfer function to be 

Vt(s) KaKmKt/N 
Gp(s) = = 

Vc(s) Jeqs + Beq 

where Vt(s) is the tachometer output voltage, and Vc(s) is the controller output (input to 
the power amplifier), and we have measured or calculated the following numbers: 

• Jeq = 0.03N.m2 

• Beq = 0.014N.m.s/rad (lab average) 

• Ka = 2.0A/v 

• Km = 0.0292N.m/A (lab average) 

v s rev v • Kt = (0.016
rev/min )(60

min )(2
1 
π rad ) = 0.153

rad/s 

N = 44 = 0.244• 
180 
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