
2.004 MODELING DYNAMICS AND CONTROL II Spring 2002

Solutions to Problem Set No. 7

Problem 1. Pendulum mounted on elastic support. This problem is an execise in
the application of momentum principles. Two possible solutins are described.

(a) The system consists of two rigid bodies in plane motion. Without constraints there
would be six degrees of freedom. However, the carriage m is constrained to slide along
the rod, so it has only the single degree of freedom indicated by the displacement x,
and the pendulum M is constrained to have its top end connected to the pivot B on
the carriage so it has only the single additional degree of freedom indicated by the
angle �.
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Figure 1: Generalized coordinates x and �.

The displacements of the mass center C of the pendulum are described with respect to
the �xed XY reference frame whose origin is at the equilibrium position of the pivot
center B.

xC = x+
L

2
sin � and yC = �

L

2
cos �

The linear momentum components of the pendulum are

px =M _xC =M( _x+
L

2
_� cos �) and py =M _yC =M

L

2
_� sin �

The angular momentum of the pendulum about its mass center is

HC = Ic! =M
L2

12
_�:
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The constraints on the carriage m prohibit the existence of angular momentum, or
linear momentum in the Y-direction. The linear momentum of the carriage in the
X-direction is m _x.

(b) Equations of motion for the generalized coordinates x and � are obtained by apply-
ing momentum principles to suitable free-body diagrams of parts of the system. In
the �rst approach, four momentum equations are written which include the two gen-
eralized coordinates and two internal reaction forces. The reaction forces are then
eliminated by algebraic manipulation to get two simultaneous di�erential equations
for the coordinates x and �. In the second approach two independent equations of
motion for x and � are obtained directly by careful choice of free bodies and momen-
tum principles. In the second procedure it is necessary to use the generalized angular
momentum equation X

~�B =
d ~HB

dt
+ ~vB � ~P (1)

which applies when the moving moment center B is not the mass center of the system
under consideration.

(i) The �rst approach is more straightforward but may involve considerably more
algebraic manipulation. Each mass in the system is isolated in a separate free-
body-diagram and as many momentum equations written as there are indepen-
dent momentum components for that mass. Free-body-diagrams for the carriage
(a) and the pendulum (b) are shown in Fig.2. Note that the internal force reac-
tion components N and T at the pivot B in (b) are equal and opposite to those
in (a). The external reaction N1 on the carriage m is applied by the rod which
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Figure 2: Free-body diagrams.

supports the carriage. Applying the linear momentum principle in the horizontal
direction to the free body in (a) yields

T � 2kx =
dpx
dt

= m�x (2)
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Since the carriage has no vertical momentum the momentum principle in the
vertical direction reduces to the equilibrium relation

N1 = mg +N

which permits determination of the external reaction force after the internal
reaction forces have been found. Turning next to the free-body diagram in (b)
of Fig.2 where there are three momentum components: horizontal, vertical, and
angular momentum about C, we apply the linear momentum principle in the
horizontal direction to get

�T =
dpx
dt

=
d

dt
M( _x+

L

2
_� cos �) =M [�x+

L

2
(�� cos � � _�2 sin �)] (3)

and the linear momentum principle in the vertical direction to get

N �Mg =
dpy
dt

=
d

dt
(M

L

2
_� sin �) =M

L

2
(�� sin � + _�2 cos �) (4)

and the angular momentum principle about C to get

T
L

2
cos � �N

L

2
sin � =

dHC

dt
=

ML2

12
�� (5)

At this stage there are four equations [(2), (3), (4), and (5)] for x, �, N and
T . It remains to eliminate the internal reaction forces N and T from these four
equations to obtain two independent equations for the generalized coordinates x
and �. One equation is produced by inserting T from (3) into (2) to get

(M +m)�x+ 2kx+M
L

2
�� cos � �M

L

2
_�2 sin � = 0 (6)

A second equation is obtained by inserting the values of T and N provided by
(3) and (4) into (5) to get, after considerable cancellation,

M
L

2
�x cos � +M

L2

3
�� +Mg

L

2
sin � = 0 (7)

Equations (6) and (7) are the desired equations of motion for x and �.
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(ii) One way to eliminate the internal force reactions is to consider the entire system

as a free body. The internal reactions appear as equal and opposite pairs of
forces and hence have no net e�ect on the dynamics of the whole system. A free-
body diagram of the entire system is shown in Fig. 3. The equation obtained by
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Figure 3: Free-body diagram of carriage plus pendulum.

applying the linear momentum principle in the horizontal direction to the free
body in Fig.3 is

�2kx =
d

dt
(m _x+px) =

d

dt
[m _x+M( _x+

L

2
_� cos �)] = (M+m)�x+M

L

2
(�� cos �� _�2 sin �)

which is equivalent to Eq.(6) above.

A second method of eliminating the internal reaction forces N and T is to return
to the free-body diagram of the pendulum M in (b) of Fig.2 and observe that
these reaction forces have no torque about their point of application B. We
therefore consider application of the generalized angular momentum equation
(1) to (b) in Fig.2. The only torque about B is due to gravity.

~�B = �Mg
L

2
sin �~uz

The angular momentum of the pendulum about B is

~HB = IC _�~uz+
�!

BC �~P =M
L2

12
_�~uz +

L

2
(sin �~ux � cos �~uy)� (px~ux + py~uy)

= M
L2

12
_�~uz +

L

2
(sin �~ux � cos �~uy)�M [( _x+

L

2
_� cos �)~ux + (

L

2
_� sin �)~uy)]

=

�
ML2 _�(

1

12
+

1

4
sin2 � +

1

4
cos2 �) +M

L

2
_x cos �

�
~uz =

"
M

L2

3
_� +M

L

2
_x cos �

#
~uz

and the additional term in Eq.(1) is

~vB � ~P = _x~ux � (px~ux + py~uy) = _xpy~uz =M
L

2
_� _x sin �~uz
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Finally inserting these terms in Eq.(1) yields

�Mg
L

2
sin � =

d

dt

"
M

L2

3
_� +M

L

2
_x cos �

#
+M

L

2
_� _x sin � =M

L2

3
�� +M

L

2
�x cos �

which is equivalent to Eq.(7) above.

Comparison of procedures (i) and (ii). The �rst method is straightforward, but the
elimination of the super
uous reaction forces can be tedious if the system has many rigid
bodies and only a few independent generalized coordinates. The second method requires
individual analysis of each new system geometry in order to identify the free bodies and mo-
mentum principles which don't introduce any super
uous reaction forces. Much less algebra
is required, but every time the generalized angular momentum equation (1) is employed,
it is necessary to calculate two vector cross-products: the angular momentum about the

moving point B is ~HB = ~HC+
�!

BC �~P and the additional term in (1) is ~vB� ~P . Depending
on the system and on one's experience, these cross-product calculations can be more , or
less, time consuming than the algebraic eliminations required in the �rst procedure.

Problem 2. Stabilization of rocker. The rocker is a single rigid body, but it may
be considered to be made up of three parts: two semicicular shapes of mass m! and a
rectangular shape of mass m2 as shown in Fig.1.

•R

2R

2R

RC

m1

m2

m1

Figure 1: Rocker is made up of three parts.

(a) The mass of the semicircular part is m1 = �h�R2=2 and the mass of the rectangular
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part is m2 = 2�hR2 so the total mass of the rocker is

M = 2m1 +m2 = �h(2 � �
R2

2
+ 2R2) = �hR2(� + 2)

Similarly the total moment of inertia of the rocker about its mass center C is

IC = 2I1 + I2 (1)

where I1 is the moment of inertia of one of the semicircular parts about C, and I2 is
the moment of inertia of the rectangular part about C. For the rectangular part, the
centroid of the rectangle is C itself, so

I2 = m2

R2 + (2R)2

12
=

5

12
m2R

2 =
5

6
�hR4 (2)

For the semicircular parts, their centroids C1 are separated from the rocker centroid
C by the distance R=2 + y as shown in Fig.2. The calculation of I1 is an exercise in

•
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Figure 2: I1 is the moment of inertia of the semicircular part about C.

the use of the parallel-axis theorem. From Fig.2 it follows that

I1 = IC1
+m1(

R

2
+ y)2

where IC1
is the moment of inertia of the semicircular part about its own centroid

C1, and y is given as 4R=3�. The calculation of IC1
by direct integration is quite

tedious. An alternative procedure is to use the parallel-axis theorem again to relate
IC1

to the easily evaluated moment of inertia Io, which is the moment of inertia of the
semicicular part about the center O of the circle. The parallel-axis theorem says that

Io = IC1
+m1y

2 or IC1
= Io �m1y

2

Now Io is one half the moment of inertia of a full circular disk of radius R whose mass
is 2m1, so

Io =
1

2
(2m1)

R2

2
= m1

R2

2

Working backwards through the previous equations , one �nds

IC1
= m1(

R2

2
� y2)

6



and then

I1 = m1(
R2

2
� y2 +

R2

4
+Ry + y2) = m1R

2(
3

4
+

4

3�
) = (

3�

8
+

2

3
)�hR4 (3)

Finally, inserting (2) and (3) into (1) yields

IC =

�
2 � (

3�

8
+

2

3
) +

5

6

�
�hR4 =

9� + 26

12
�hR4 =

9� + 26

12(� + 2)
MR2 = 0:88MR2

(b) If the rocker is rolled through a small angle away from the equilibrium position and
then released from rest the forces acting will be as shown in Fig.3.
It can be seen that the gravity force Mg exerts an upsetting torque about the contact

•C

N

Mg

T
B

Figure 3: Upright equilibrium position is unstable.

point B. The equilibrium is not stable.
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(c) To derive a di�erential equation which describes the response �(t) to the excitation
f(t), we begin by studying the rolling motion. See Fig.4. Because of the no-slip

•
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θ

f(t)
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Figure 4: Free-body diagram of rocker rolling without slip.

constraint, only the single generalized coordinate � is required to completely describe
the position of the rocker. Note that the rocker is in the upright equilibrium position
when � = 0. The distance AB rolled along the 
oor is equal to the arc A0B = R� on
the rocker. The displacement components of the mass center C are

x = R� +
R

2
sin � and y = R+

R

2
cos �

and the linear momentum components of the rocker are

Px =M _x =M(R _� +
R

2
_� cos �) and Py =M _y = �M

R

2
_� sin �

The angular momentum of the rocker about its mass center C is

HC = IC! = IC _�

in the clockwise direction. The forces acting on the rocker are shown in Fig.4: The
control force f(t) and the gravity force Mg, acting at the mass center C, and the 
oor
reaction force components N and T . Two procedures for obtaining the equation of
motion are explained:

(i) In the �rst procedure three momentum equations are written containing the
unknown quantities �, N , and T , and then the reaction forces are eliminated
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by algebraic elimination. The three equations represent the linear momentum
principle applied in the horizontal direction,

f(t) + T =
dPx
dt

=M(R+
R

2
cos �)�� �M

R

2
_�2 sin �) (4)

the linear mmomentum principle applied in the vertical direction,

N �Mg =
dPy
dt

= �M
R

2
(�� sin � + _�2 cos �) (5)

and the angular momentum principle applied about the mass center C (in the
clockwise direction),

N
R

2
sin � � T (R+

R

2
cos �) =

dHC

dt
= IC �� (6)

It remains to eliminate the 
oor reaction forces N and T from these three equa-
tions. Eq.(4) is easily solved for T , and Eq.(5) is easily solved for N . When these
values are inserted in the left-hand side of (6), a single long equation is obtained,
which simpli�es considerably, on canceling terms proportional to sin � cos �, and
using the identity sin2 � + cos2 � = 1. The simpli�ed result is

[IC +MR2(
5

4
+ cos �)]�� �M

R2

2
_�2 sin � �Mg

R

2
sin � = f(t)(R+

R

2
cos �) (7)

This is the desired equation of motion.

(ii) In the second procedure only one momentum principle is applied. From Fig.4, it
is seen that the 
oor reactions N and T will not enter if the angular momentum
principle is applied about the contact point B. Since B has the velocity ~vB = R _�~ux
it is necessary to use the generalized angular momentum equation

X
~�B =

d ~HB

dt
+ ~vB � ~P (1)

The torque about B is

X
~�B = �f(t)(R+

R

2
cos �)~uz �Mg

R

2
sin �~uz

The angular momentum about B is

~HB = ~HC+
�!

BC �~P

where

�!

BC=
R

2
sin �~ux + (R+

R

2
cos �)~uy and ~P = Px~ux + Py~uy

so

�!

BC �~P = [Py
R

2
sin ��Px(R+

R

2
cos �)]~uz =M _�[�(

R

2
sin �)2�(R+

R

2
cos �)2]~uz

Thus, the angular momentum of the rocker about B is

~HB = �[IC _� +MR2 _�(
5

4
+ cos �)]~uz
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and its derivative is

d ~HB

dt
= �f[IC +MR2(

5

4
+ cos �)]�� �MR2 _�2 sin �g~uz

The extra term in Eq.(1) is

~vB � ~P = R _�~ux � (Px~ux + Py~uy) = R _�Py~uz = �M
R2

2
_�2 sin �~uz

Finally, insertion of these terms in Eq.(1) yields

�f(t)(R+
R

2
cos �)~uz�Mg

R

2
sin � = �f[IC+MR2(

5

4
+cos �)]���MR2 _�2 sin �g�M

R2

2
_�2 sin �

which is equivalent to the equation of motion (7) obtained by procedure (i).

[IC +MR2(
5

4
+ cos �)]�� �M

R2

2
_�2 sin � �Mg

R

2
sin � = f(t)(R+

R

2
cos �) (7)

(d) The nonlinear di�erential equation (7) can be linearized in the neighborhood of the
equilibrium position � = 0 by setting sin � = � and cos � = 1 and neglecting higher-
order terms in � and _�. For example, the term proportional to _�2 sin � in (7) is of third
order in comparison with the �rst-order terms proportional to � and ��, and is thus
omitted from the linear approximation. The linearized approximation to (7) is

(IC +
9

4
MR2)�� �Mg

R

2
� =

3R

2
f(t) (8)

Note that the coeÆcient of �� can be interpreted, via the parallel-axis theorem, as the
moment of inertia of the rocker about its extreme bottom point A0.

IA0 = IC +M(
3R

2
)2

The linearized di�erential equation in the time domain can be transformed to the
Laplace s-domain by making the following sustitutions:

�(t) �! �(s); f(t) �! F (s); and
d

dt
�! s

The transform of Eq.(8) is

(IA0s2 �Mg
R

2
)�(s) =

3R

2
F (s) (9)

and the transfer function from F (s) to �(s) is

�(s)

F (s)
=

3R

2

IA0s2 �Mg
R

2
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(e) The control force f(t) is described in the time domain as

f(t) = K[�d(t)� �(t)]

In the s-domain this becomes

F (s) = K[�d(s)��(s)] (10)

The control force is coupled to the rocker by inserting F (s) from (10) into (9) to get

(IA0s2 �Mg
R

2
)�(s) = K

3R

2
[�d(s)��(s)]

or

(IA0s2 +K
3R

2
�Mg

R

2
)�(s) = K

3R

2
�d(s)

The transfer function from the desired angle to the actual response angle is

�(s)

�d(s)
=

K
3R

2

IA0s2 +K
3R

2
�Mg

R

2

The poles of the transfer function are the roots of the equation

s2 = �
(3K �Mg)

R

2
IA0

If s2 is negative the poles lie on the imaginary axis of the s-plane, and the natural
motions of the system are bounded oscillations. However, if s2 is positive, one of
the poles is real and positive, indicating that one of the natural motions involves
exponential growth. The borderline between stabilty and instability is at s2 = 0,
when the gain K has the value

K =
Mg

3

For smaller values of K, the system is unstable; for larger values the system is stable.
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Figure 1: Mass-spring vibratory system

The equations of motion are obtained by applying the linear momentum principle to each
of the masses in turn. The mass 3m is acted on by the tension kx1 to the left, and by the
tension k(x2 − x1) to the right, so

−kx1 + k(x2 − x1) =
d

dt
(3mẋ1) = 3mẍ1

The mass 2m is acted on by just the tension k(x2 − x1) to the left, so

−k(x2 − x1) =
d

dt
(2mẋ2) = 2mẍ2

(a) These equations may be written in matrix form as

−
[

2k −k

−k k

] {
x1

x2

}
=

[
3m 0

0 2m

] {
ẍ1

ẍ2

}
(1)

(b) The undamped free vibrations are expected to have the form
{

x1

x2

}
=

{
a1

a2

}
sin(ωt + φ)

When this trial solution is inserted in (1), the result is the eigenvalue problem
[

2k −k

−k k

] {
a1

a2

}
= ω2

[
3m 0

0 2m

] {
a1

a2

}
(2)

for the natural mode shapes {a1 a2}T and the natural frequencies ω2.

(c) The analytical solution of the eigenvalue problem is obtained by moving all the terms
in (2) to the left-hand side of the equation,

[
2k − 3mω2 −k

−k k − 2mω2

] {
a1

a2

}
=

{
0

0

}
(3)

and setting the determinant of the matrix equal to zero to get the characteristic
equation

2k2 − 7kmω2 + 6m2ω4 − k2 = k2 − 7kmω2 + 6m2ω4 = (k − mω2)(k − 6mω2) = 0
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The roots of the characteristic equation are the eigenvalues

ω2
1 =

1
6

k

m
and ω2

2 =
k

m

The corresponding natural modes are obtained by back-substituting the eigenvalues

in (3). When ω2
1 =

1
6

k

m
is inserted in (3) the result is




3
2
k −k

−k
2
3
k







a1

a2


 =




0

0




which indicates that the first mode-shape can be represented by the modal vector

{a}1 =




a1

a2




1

=




2/3

1




When ω2
2 =

k

m
is inserted in (3) the result is


 −k −k

−k −k







a1

a2


 =




0

0




which indicates that the second mode-shape can be represented by the modal vector

{a}2 =

{
a1

a2

}
2

=

{ −1

1

}

The modal matrix [Φ] has the individual modes as columns, so

[Φ] =


 2/3 −1

1 1




(d) MATLAB does not do dimensions. In order to use MATLAB the eigenvalue problem
(2) must be be put in dimensionless form by collecting all the dimensional parameters
into a non-dimensional parameter λ to get

[
2 −1

−1 1

] {
a1

a2

}
= λ

[
3 0

0 2

] {
a1

a2

}

where

λ =
mω2

k

To have MATLAB solve the eigenvalue problem it is only necessary to tell it the non-
dimensional [K] and [M] matrices and then type the command [V, D] = eig(K, M).
The complete MATLAB session is copied below:
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K = [ 2 -1 ; -1 1 ] ; M = [ 3 0 ; 0 2 ] ;
[V, D] = eig( K, M )

V =

0.7071 0.5547
-0.7071 0.8321

D =

1.0000 0
0 0.1667

Note that MATLAB lists the largest eigenvalue first. This is opposite to the usual
engineering convention which calls the mode with the lowest natural frequency the
first mode. Note also that MATLAB scales its modal vectors so that the sum of the
squares of all the elements is unity. This is different from the common engineering
tradition of scaling the modal vector so that the largest element is unity.
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