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2.004 Problem Set 1 Solutions 

Problem 1. For the rotational system, we are given a flywheel spinning at rate Ω(t), driven 
by a torque T (t) that is opposed by a frictional torque Tf (t). The governing differential 
comes from the torque balance, 

� 
M = JΩ̇ – note that the sign of the frictional torque is 

opposite that of the driving torque: 

T (t) − Tf (Ω) = J ˙	 (1)Ω(t) 

Collecting the Ω terms: 
J ˙ (2)Ω(t) + Tf (Ω) = T (t) 

Problem 2. Given the above relation, we are asked to consider three separate cases for the 
frictional torque Tf (Ω): 

(a) Coulomb torque,	 i.e., Tf (Ω) = Tcsgn(Ω). If we assume unidirectional motion with 
Ω > 0 then Tf (Ω) = Tc. Substituting into (2): 

J ˙	 (3)Ω(t) = T (t) − Tc 

(b) Viscous torque, with Tf (Ω) = BΩ. Substituting into (2): 

J ˙ (4)Ω(t) + BΩ(t) = T (t) 

(c) With both viscous and Coulomb torque, again substituting into (2): 

J ˙ (5)Ω(t) + BΩ(t) = T (t) − Tc 

Problem 3. We are asked to solve the above differential equations, given initial condition 
Ω(0) = Ω0 and no applied torque, T (t) = 0. 

(a) With T (t) = 0, substituting into (3): J ˙	 Ω(t) = −Tc Integrating, Ω(t) = −Tc, or ˙ /J . 

Tc
Ω(t) = − t + C 

J 

From the initial condition Ω(0) = Ω0, we have Ω0 = C; substituting into the above, 

Tc
Ω(t) = Ω0 − t	 (6)

J 

(b) From (4), with T (t) = 0, 
J ˙ (7)Ω(t) + BΩ(t) = 0.


Dividing through by J :

˙ B 

Ω(t) = 0
Ω(t) + 
J 
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Given the form of the above equation, we assume a solution of the exponential form, 
Ω(t) = Ae−t/τ . Using the initial condition Ω(0) = Ω0, we have Ω0 = A. Differentiating 
the assumed solution, ˙ , so Ω(t) = −(1/τ )Ae−t/τ 

1 B −
τ 
Ae−t/τ + 

J 
Ae−t/τ = 0 

Thus τ = J/B, so we get: 
)t

JΩ(t) = Ω0e
−( B 

(8) 

(c) With both viscous and Coulomb torque, and T (t) = 0, from (5): 

J ˙ = −Tc Ω(0) = Ω0Ω(t) + BΩ(t) ; 

˙ B Tc
Ω(t) + 

J 
Ω(t) = − 

J 
; Ω(0) = Ω0 

dΩ(t) 1 Tc J 
or 

dt 
+ 

τ 
Ω(t) = − 

J 
; where τ ≡ 

B 

Separating variables: 

dΩ(t) 1 
Ω(t) + Tc/B 

= −
τ 
dt 

Substituting in the above, ω(t) = Ω(t) + Tc/B, dω(t) = dΩ(t): 

dω 1 
ω 

= −
τ 
dt 

t 
ln ω = + C−

τ 
ω(t) = e−t/τ +C → 

Reversing the substitution of variables, 

Tc
Ω(t) = ω(t) − 

B 

e−t/τ +C Tc 
= − 

B 

Ae−t/τ Tc 
= − 

B 

To find the constant, we use the initial condition Ω(0) = Ω0: 

Tc
Ω0 = A − 

B 
Tc

A = Ω0 + 
B 
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So, finally:


�
Tc 

� 
Tc

Ω(t) = Ω0 + 
B

e−t/τ − 
B 

(9) 

Ω0e
−t/τ Tc 

�
1 − e−t/τ 

�
or, Ω(t) = (10)− 

B 

Problem 4. The moment of inertia of a solid cylinder of mass m and radius r about its 
axis is given by J = 

2
1 mr2, while the mass (assuming uniform density ρ) is m = (πr2h)ρ, 

where h is the height of the cylinder. Thus the moment expands to 

π 
J = (r 4h)ρ (11)

2 

for a solid cylinder. For our flywheel, neglecting the spokes and hub we may consider just 
the outer ring (which given the r4 term above will dominate the inertia). Its moment of 
inertia, by superposition, is the difference between the moments of inertia of two cylinders 
of radius r2 and r1, the outer and inner radii, respectively: 

J = 
π 

(r2
4h)ρ − 

π 
(r1

4h)ρ = 
πh 

(r2
4 − r1

4)ρ (12)
2 2 2 

For the plant described in the lab handout, r1 = 63.50 × 10−3 m, r2 = 104.8 × 10−3 m, 
h = 22.23 × 10−3 m, and ρ = 8230 kg/m3 . Thus, 

J = 
π ∗ 0.02223

(0.10484 − 0.06354) ∗ 8230 = 3.00 × 10−2 kg m2 (13)
2 

Problem 5. From Problem 4, we know the form of the equation of motion for the flywheel 
with viscous damping, with coulomb damping, and with both forms of damping. Given 
motion data, we can take the general equation (from 4(c)) and attempt a least-squares fit 
to the experimental data, varying the coefficients Tc and B (Ω0 is known; it is the measured 
velocity at t = 0, and J has been computed in Problem 4). 
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Plots for Problem 3 

Coulomb damping only 
J = 1, Ω

0
 = 1, T

c
 = 0.1 
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Pure linear decay: 
Ω goes to zero at finite time 

Viscous damping only 
J = 1, Ω  = 1, B = 0.2
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Pure exponential decay: 
Ω becomes infinitesimally small as t−−>∞ 
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J = 1,  Ω
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Linear + exponential decay:
Ω goes to zero at finite time,
decay approaches linear with increasing time

2



