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Solution of Problem Set 10 

Problem 1: 

� � � � � � � � � � � � � � � � � � 

� � � � � � 

(a) Transfer functions can be simply calculated by utilizing the voltage divider rule: 

1 1 R RCs 
Ha(s) = Cs 

1 = Hb(s) = 
1 = 

R + RCs + 1 R + RCs + 1 
Cs Cs 

(b) 

H : Pole-Zero Plot H : Pole-Zero Plot 
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(c) The frequency response is: 

1 jRCω 
Ha(jω) = Ha(s)|s=jω = 

jRCω + 1 
Hb(jω) = Hb(s)|s=jω = 

jRCω + 1 
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giving 

�	 1 � 1 |Ha(jω)| = 
jRCω + 1 

= � 

(RCω)2 + 1 

� Ha(jω) = � (1) − � (jRCω + 1) = tan−1 (RCω) 

� jRCω � RCω |Hb(jω)| = 
jRCω + 1 

= � 

(RCω)2 + 1


� Hb(jω) = � (jRCω) − � (jRCω + 1) = π/2 − tan−1 (RCω)
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(d)	 The circuit a is a low-pass system because high frequencies are attenuated. On the other hand 
circuit b is a high-pass one because as the frequency approaches zero H(jω) tends to zero. | |

Problem 2: 
T (s) 1/(mcp)

H(s) = = 
Qs s + (hA/(mcp)) 

(a)	 From the transfer function: 
dT hA 1 

+ T = Qs
dt mcp mcp 
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(b)	 The steady-state temperature Tss is found by letting all derivatives approach zero, that is if 
the solar heat flow is a constant: 

1 
Tss = Qo

hA

(c) From the transfer function: 

T (jω) 1/(mcp)
H(jω) = = 

Qs(jω) jω + (hA/(mcp)) 

Then

1/(mcp) −1 ωmcp
|H(jω)| = � 

ω2 + (hA/(mcp))2 
, � H(jω) = − tan

hA 

(d)	 Assume that Qs(t) = Qo sin(ωot − π/2) + Qavg and note that ωo = 2π rad/year= 2π/365 
rad/day = 2π/(365 × 86400) rad/sec. The solution is composed from a constant input, part 
b, and a sinusoidal input from part c: 

Qo/(mcp)	 −1 ωomcp 1 
T (t) = � sin ωot − π/2 − tan + Qavg 

(ωo)2 + (hA/(mcp))2 hA hA

The annual fluctuation of the pond temperature Δ(T ) is equal to two times sinusoidal am­
plitude: 

Qo/(mcp)
Δ(T ) = Tmax − Tmin = 2Qo |H(jω)| = �ω=ωo 

(ωo)2 + (hA/(mcp))2 

(e) T (t) is a maximum when ωot − π/2 − tan−1(ωomcp/hA) = π/2 or 

tmax = (π/2 − (−π/2 − tan−1 ωomcp/hA))/2π years 

1	 1 −1 ωomcp
= 365 + tan days from the start of the year. 

2 2π hA 

Problem 3: 

(a)	 The slope of the high frequency asymptote is −(np −nz)∗20 dB/decade where np is the number 
of system poles and nz is the number of system zeros: (a) -20dB/decade, (b) -40 dB/decade, 
(c) -40 dB/decade, (d) -20dB/decade. 

(b)	 The asymptotic high frequency phase response is (nz − np) ∗ π/2 rad: (a) −π/2 rad, (b) −π 
rad, (c) −π rad, (d) −π/2 rad. 

(c)	 The low frequency asymptotic behavior is determined by poles or zeros at the origin: (a) 0 
dB/decade slope: the low frequency response tends to a constant value, (b) - /decade slope: 
the low frequency response tends to infinity, (c) 20 dB/decade slope: the low frequency 
response tends to zero, (d) 0 dB/decade slope: while in principle the low frequency response 
tends to a constant value, this is a marginally stable system. 

(d)	 The low frequency phase shift is determined by the contribution from each pole and zero: 
left-half plane poles/zeros do not contribute, right half plane zeros contribute π rad, zeros 
and poles at the origin contribute ±π/2 rad. (a) 0 rad, (b) −π/2 rad, (c) +3π/2 rad, (d) 0 
rad. 
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Problem 4: 

(a) No, the stability of a system is not affected by its zeros. 

(b)	 For the systems to be stable, we only consider b >  0 cases. A typical pole zero plot for the 
case when a >  0, b > 0  is shown below: 

 

Both systems have the same magnitude plot (| H1(jω) =| |H 2(jω)| ), while they differ on the 
phase plot: 

s + a s  a s + a 
H1(s) =  , H

 2(s) =  
− −− = 

s + b	 s + b s + b 

√ 
ω2 + a2 

|H1(jω)| = |H2(jω)| = √ 
ω2 + b2 

  H1(jω) = t an−1
ω ω

 −  tan−1 , if a > 0, b > 0 
a b 

 H 1
ω

 −
2(jω) = 2π −  ω 

tan − −  tan 1 , if a > 0, b > 0 
a b 

The exact form of the Bode plots depends on the relative location of the pole and zero. Here 
for example, we examine two cases: 
1. {a = 2, b = 1 }. 
2. {a = 1, b = 2 }. 

�

�
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Bode Diagram 
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(c)	 The magnitude of the frequency response function is not affected by whether a zero is lo­
cated in the left-half plane or its reflection about the imaginary axis. The phase response 
is significantly affect however. In general the phase-shift associated with a right-half plane 
zero is greater than that of the corresponding left-half plane position - this can be easily 
demonstrated using the geometric interpretation from the pole-zero plot. Hence the name 
“non-minimum phase” system. 

(d)	 Both of them have the same final value (equal to H(0) = H(s) s=0). On the contrary their |
initial value is different (equal to H(∞) = H(s)|s=∞). While both systems reach the same 
final value for the same input; the first one initially moves on the same direction as the input, 
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while the second one initially moves on the opposite direction of the input. 

H1(s) = 
s + 3 

, H2(s) = 
s − 3

= 
−s + 3 

s + 1
−

s + 1 s + 1 

Step Response 

0 1 2 3 4 5 6 
Time (sec) 

(e)	 If 

H2(s) = 
s − a 

s + a

then


H2(jω) = � 

(jω)2 + a2 
= 1 and � H(jω) = π − 2tan−1(jω/a)| |

(jω)2 + a2 

The magnitude is independent of frequency, giving rise to the term “all-pass” filter. Note 
that the phase shift is a function of frequency. 

Problem 5: 

(a)	 For a comprehensive study, here we look at three transfer functions simultaneously. The first 
one corresponds to the original system, the second one corresponds to the passively damped 
system and the third one corresponds the active system. Those systems are shown in the 
below figure: 
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The transfer function of the original system can be computed as follows: 

Vm1 (s) 1 1 s 
Goriginal(s) = = =	 = 

Fwind(s) Ym1 + YB1 + YK1 m1s + B1 + K1/s m1s2 + B1s + K1 

The second and third transfer functions are taken from Problem Set 7: 

Vm1 (s) m2s
3 + B2s

2 + K2s 
Gtuned(s) = = 

Fwind(s) a4s4 + a3s3 + a2s2 + a1s + a0 

Vm1 (s)	 m2s
3 

Gactive(s) = = 
Fact(s) a4s4 + a3s3 + a2s2 + a1s + a0 

where	 a4 = m1m2 

a3 = (m1 + m2)B2 + m2B1 

a2 = (m1 + m2)K2 + m2K1 + B1B2 

a1 = K1B2 + K2B1 

a0 = K1K2 

The groups get slightly different estimated values, but typically: m1 = 5.11 kg, B1 = 0.77 
N.s/m, K1 = 2020 N/m, m2 = 0.87 kg, B2 = 8.8 N.s/m, K2 = 81 N/m . Hence the transfer 
functions would be equal to: 

Vm1 (s)	 s 
= =Goriginal(s)

Fwind(s) 5.11 s2 + 0.77 s + 2020


Vm1 (s) 0.87 s3 + 8.8 s2 + 81 s

Gtuned(s) = = 

Fwind(s) 4.446 s4 + 53.29 s3 + 2249 s2 + 17840 s + 163620 

Vm1 (s) 0.87 s3 

Gactive(s) = = 
Fact(s) 4.446 s4 + 53.29 s3 + 2249 s2 + 17840 s + 163620 
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(c)	 The original and tuned system both have the same asymptotic behaviors at low frequencies 
and high frequencies (+20 dB/decade slope for low frequencies and -20 dB/decade slope for 
high frequencies). Their slopes match because they have the same number of zeros at origin, 
as well as the same number of excessive poles (np −nz). Furthermore, asymptotes lie on each 
other because both have the same approximation for low and high frequencies ( 

K
s 
1 

= 
K
K

2

2

K
s 
1 

3 
and	 s 

2 = m2s
4 ). Moreover, both of them have a resonant peak located at ωn ≈ 20 rad/s 

m1s m2m1s

and very close to the imaginary axis. Careful examination of pole-zero map shows that while 
their ωn is almost the same; they only differ in ζ value which contributes to the sharper peak 
of the original system. There is another pair of complex poles in the tuned system as well, 
but since it is very close to a zero complex pair, its net effect is very subtle. 
The tuned and active systems both have the same denominator and exactly the same term for 
the largest power of s in the numerator. This means that their high frequency behaviors are 
the same. At high frequencies, both have a slope of -20 dB/decade and a phase of −π/2 rad. 
At low frequencies, Gtuned has a slope of +20 dB/decade and a phase of π/2 rad, while the 
Gactive has a slope of +60 dB/decade and a phase of 3π/2 rad. Furthermore, they have only 
one resonant peak which matches and is located at ωn ≈ 20 rad/s and very close to imaginary 
axis. At the resonant peak, their magnitudes differ less than 1 dB while their phases differ 
about π/4 rad. 

(d)	 The original system and tuned system have the same Bode plot for low and high frequencies. 
This means that tuned mass-damper is only effective for intermediate frequencies (around the 
peak ωn ≈ 20 or ≈ 3 Hz), where we have a significant building sway reduction. 

(e)	 The peak is decreased by 23 dB which means that maximum amplitude around 3 Hz is 
23 

decreased by 10 20 ≈ 14.5 times. 
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