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PROFESSOR: So we'll start quickly going over the concept questions for the homework this week.
So you have a two rotor system. It says, if you give it a deflection at a exactly the
mode shape of mode two, what frequency components do expect the transient
response to have? So most people said only omega 2, but quite a few people said

both.

So this introduction to vibration that we have been doing for the last few lectures--
my goal in it is to have you folks go away with a pretty good conceptual
understanding of the basics of vibration, and on the final exam, I'm not going to
have you derive anything, like finding the natural frequencies of a 3 by 3 degree of
freedom system, solving a sixth order system in omega squared. | won't do that kind
of thing to you, but questions like this are really fair game. So if we did this business
bimodal analysis-- and we did an example the other day where with the system we
had here, if you deflect it in exactly the shape of one mode, what kind of response

do you get? Initial conditions that are shaped exactly like one the mode shapes.
AUDIENCE: It has exactly that natural frequency in it.

PROFESSOR: Well, it'll not only have that natural frequency in it, but if you deflect it initially in the

mode shape, what will the responding motion look like?
AUDIENCE: Just the mode shape.

PROFESSOR: Just like the mode shape, and if the motion is in a particular mode shape, it will be
at-- this is transient vibration. No external force. You deflect it and let it go. You will
see only motion in that mode if you give it an initial deflection exactly in that mode
shape. If you went to the other mode, and deflected it that way, and let go, it would

change frequency, and it would vibrate only in that shape. And any other
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combination of motions is some linear sum of those two mode shapes. Any other
allowable motion of the system can be made up of some weighted sum of the two
mode shapes, right? And that's the amount of each mode that you get-- is the

weighted sum.

What are the weightings? If the weightings are 1, 0, then it's all one mode and not of
another. If it takes some of each mode to give you the initial deflected shape, that's

how much of each mode you get. So the answer to this question is only mode two.

OK, next. | forget what you were given. Apply the concept. Which mode is likely to
dominate the steady state response for the excitation of part D? So it was probably
being excited harmonically at the natural frequency of mode two. So which mode?
So harmonic excitation, which mode do you expect to respond the most when you

excite it at one of the natural frequencies?

I'd say [INAUDIBLE].

At that natural frequency. Why? Why?

Because that's what the eigenvalue is.

Well, there's an eigenvalue there, but now we're talking about steady state
response. What's the transfer function of a single degree of freedom system look
like? Just trace it in the air. This is a response per unit input, and where does it go?

Way up high--

At the resonance.

At the resonance. And so if you have two 2 degree of freedom system, how many
resonances do you have? What do you think the transfer function is going to look
like for a two degree of freedom system if you just plotted it just plot as a function of

frequency?

Double peak.

Double peak. So the transfer function is likely to do that at one frequency and that at
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the next natural frequency. And that's what we're going to talk about today, in fact.

OK so if you excited the second natural frequency and it's lightly damped, it's likely
to be dominated by that modal response. In that question, is it guaranteed to be
only that mode responding, even if you derive it at the natural frequency? Another
way to saying this question, can the first mode have some response at any
frequency you excite the system at? Sure. It has transfer function. It's continuous in

frequency. It just won't be very big.

OK, next. For what value is omega over omega n is the force transmitted to the wall
going to be the greatest. So this is-- when we make this, this is now we're doing--
it's rotating around. OK, so this thing is rotating mass now at a constant frequency.

So it's got a static imbalance.

And at what frequency would you expect the force transmitted to the wall be the

greatest?

At resonance.

At resonance, because that's when you get the most--

The most response.

Greatest response. And the force transmitted to the wall is through the spring and
through the dash pot, and the bigger the motions, the bigger those forces are going
to be. OK, next. And so this is-- now, if you'll account for the spring, do you expect
the counting for the mass of the spring to increase the predicted natural frequency

or decrease it?

Decrease.

Decrease. Natural frequencies behave like square root of k/m kind of thing. And if
you do anything that drives up the m, frequency is going to go down. Another way of
asking the same question is, if you neglect mass when you're estimating the natural
frequency of a system, which way are you likely to be in error? This system,

normally we just ignore the mass of the springs, and we calculate the natural
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frequency as square root of k/m, and we're almost certain to be-- predict what? Too

high or too low?

Too high.

Too high, because we've ignored some mass in the system. OK, next. | think that's
it. | want to get on with today's lecture. We have done vibration from point of view of
single degree of freedom systems, transient response, and steady escape
response. And then we've started looking at multiple degree of freedom systems,
but we actually started it from the point of view of modal analysis, and we looked at
two degree of freedom systems, and found the modal contributions of each of the

modes, and sort of did them one at a time.

So is there another way-- one of you asked me after class last time, well, can't you
just solve the differential equations directly and not bother with separating the
modes out and figuring out the modal contributions. The answer is yes, and you do
it via transfer functions, except now you will need more than one if you have more

than one degree of freedom. So that's what we'll focus on today.

And we're going to do it by thinking about the example actually from the homework.
So in the homework you have this problem of this cart with this pendulum hanging
off of it. And we-- in problem three, | think it is-- is say, OK, now the pendulum is
going to go around a constant rate, and it's going to turn this into a rotating
imbalance problem. And | shorten it up so it's just a little mass spinning around. You

have k1, c1, x1 here.

And | think you have draw in there as theta. This is point A about which it spins. And
you know the non-linear equation to motion for treating this as a two degree of

freedom system, just pendulum on a cart. And then nonlinear equation of motion.

And I'm going to put subscripts here, and I'm going to call this coordinate x1,
because we're going to need a second coordinate-- or actually, do we? What am |
saying? We don't need to do that. Just x will do. We do need the m1 and m2,

though. And so that is all-- I'm going to move the remaining stuff to the right hand
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side. So this is your nonlinear m2L theta double dot cos theta minus theta dot

squared sine theta on the right hand side. And | think | need a minus if | do that.

Now, what | do in this problem, | say let's let theta dot equals omega, and that's a
constant. And so that says theta double dot is 0. When you do that, then this term
goes away, and this becomes omega squared minus times a minus. This equals 1/2

m2L omega squared sine. And theta is just omega t.

So by forcing what was previously an unknown variable that you had the solve in
this-- you had two equations and two unknowns because you had two generalized
coordinates it took to describe the motion of this thing, x and theta. Now, once you
prescribe theta and it's given, it's no longer a variable. It's no longer a coordinate in
your generalized-- in your equations of motion that you have to solve for, and it
reduces this equation to the equation of a single degree of freedom system. On the
left hand side is the response quantities just like usual-- mx double dot plus bx dot
plus kx. And on the right hand side is our harmonic excitation, and that's this

unbalanced mass going around and around.

So this has the form here. This is some-- if you want to think of it this way, this is
some FO, and it looks like sine omega t. So this is just a single degree of freedom
system excited by harmonic excitation, and you know it has a transfer function, and
you know that there's going to be a resonance at the natural frequency of the
system. And if you don't like working with sine omega t, you could say, well, let's

measure omega theta from here if you want to, and now that's cosine omega t.

OK, so that's sort of the set up. Let me say one-- if | asked you to solve for the
magnitude of the response x1 here, how would you do it? So this is now a single
degree of freedom system excited by harmonic excitation. Steady state response--

how do you do it? This you do have to know.

Transfer function.

Use a transfer function. So this going to be the magnitude of the force times the

magnitude of the HxF of omega transfer function, and that's how you get the



magnitude of the response, and it happens to be a resonance. Then you'd be at the
peak, and if you're not a resonance, wherever you happen to be in frequency is

where you would evaluate this, and there's your response.

Now, a few years ago-- every year-- twice a year, in fact-- and they're coming up in
January, we have doctoral exams for students who want to do PhDs in mechanical
engineering, and most departments at MIT have these also. And in the dynamics
portion, there's an oral exam part. There's a written exam, also, but in the oral exam

in this particular year, gave a single degree of freedom system.

And we posed-- and we all know that, if we excite this thing with a harmonic
excitation, some F1 cosine-- and | will use complex notation, because we're going to
need it in a minute-- some F1 e to the i omega t. That's the excitation. We know
what the steady state response of this looks like. The magnitude looks like that
transfer function. But we posed-- so most would be doctoral students would know all

about single degree of freedom [INAUDIBLE].

So we posed the following question. Well, we know that the response of this is going
to do something like that, and you evaluate this at whatever frequency you're
interested in, including right at resonance. And the question we asked is, is it
possible to add a second spring and a second mass, m2 and k2, such that-- so is it
possible to pick a k2 and an m2, such that, with this excitation on here, the motion
of that thing will be 0? And in order to solve this problem, as soon as you put this on
here and assume it's sliding along-- it can't fall. It only has horizontal possible

motion, and we'd give it some coordinate describing its motion x2.

So now how many degrees of freedom does this problem have? Two. How many
equations of motion do you expect? How many peaks in a transfer function would

you expect to see? Two resonances.

So now we need to know how to find transfer functions for a multiple degree of
freedom system. enough in everything I've said about two degree of freedom
systems, everything is generalizable to n degrees of freedom. Though, what I'm
going to show you now is how to do transfer functions for multi-degree of freedom
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systems, and I'm going to do it by way of example of a two a degree of freedom

one, but just keep in mind that you can completely generalize this.

So there is my system-- two masses, two springs-- and | could even have dash
spots in here-- a ¢1, and | might have a c2. And | could even, in general, additionally
have a force acting on this second mass, which I'll call F2e to the | omega t. So

that's the completely general problem now.

Now, the equations of motion for this system you could write down. We've done it
many times now-- this particular system even-- but we could write them in matrix
form as mx double dot plus cx dot plus k. Stiffness matrix x equals and excite the
excitation in this two degree-- well, I'll just keep this is completely general. This is

any n degree of freedom system, some Fe to the i omega t.

So here's kind of an important point. We solve for the motion of a multiple degree of
freedom system to a harmonic input. We do it one frequency at a time. So this
doesn't mean that | could have force on the first mass at omega 1 or at some
omega, and force of the second mass at some other omega. I'd never do that at the
same time. It's a linear system. Superposition holds. You do things one frequency at
a time, get the answer, and if you have another frequency part, you do that
separately, then add the two answers. So this is assumed. All the forces acting on
the masses are assumed to occur at one frequency, but you can't have different

amplitudes on the different masses. So that's what that means.

So this then for the two degree of freedom system-- F, for examplet-- F of t would
be some constant F1. Another constant magnitude, F2e to the i omega t. That's

what we mean by that.

Actually, if you do that, if these are just constants, some constant force vector
applied at a single frequency, what frequency do you expect to see in the response

of the system? Steady state response.

Driving frequency. Driving frequency.

Right, it's a linear system more or less since you really want to go away with. This is
7



an intralinear system. Steady state response of a linear system-- the frequency in is
the frequency out. Always true. So we expect to see a solution. We're going to get a
solution of the form x equals some magnitude vector times an e to the i omega t
also. And the magnitude might be complex, because it there be phase angles there
due to damping and so forth, but nonetheless, they're constants. This part is a

constant vector, and that's its frequency dependence.

And if we know that is true, then we can say, well, take the time derivative of that.
The only time dependent part is the e to i omega t. So x dot becomes i omega xe to
the i omega t. And x double dot becomes minus omega squared xe to the i omega t.
So we can substitute this, this, and this into this equation. Of course, these are

matrix equations.

And when you do that, minus omega squared times the mass matrix i omega times
the ¢ matrix plus k xe to the i omega t equals Fe to the i omega t. You can get rid of
these, and now you have a algebraic equation that's no longer a function of time--
function of your original mass, damping, and stiffness matrices. And it's certainly a

function of frequency.

And if you think back, this is how we derive the transfer function for a single degree
of freedom system. And this statement is true for single degree of freedom, too.
With single degree of freedom, that's just the mass. That's just the damping, and
that's just the stiffness. And you could solve directly for the hx/f transfer function, but

with multiple degrees of freedom, we can't just quite divide this out.

This piece here is known as the-- I'll write it is z omega-- z of omega. This is known
as the impedance matrix. And if | want to solve, I'm looking for x. | want to know my
solution x. So this is essentially of the form z. It's a matrix times x, a vector, equals

F, a vector.

And just using what you know about linear algebra, to solve for x, you just multiply
through by z inverse. So x equals z inverse F. All right? And z is a two degree of
freedom system. z is a two by two matrix with frequency and everything in it, but it's

a two by two. So z inverse will be a two by two.



And for two by two, we can just write down the answer, but let's see. I'll write out z of
omega here. So just to be clear about what all this is, z of omega is this, and in this
problem, that's minus omega squared times a mass matrix, which looks like m1, 0,
0, m2. And you add to that a damping matrix, i omega, times c. The c is from the
equations of motion. ¢1 plus c2, minus c2, minus ¢2, ¢2, and plus our k matrix. k1

plus k2, minus k2, minus k2 k2. So that's what the z of omega actually looks like.

And so you would collect-- so it's a two by two matrix, and its upper left term is
minus omega squared m1 plus i omega times this plus that. Collect them all
together. And this has a form-- this collects together in a form we call z11, z12, z21,
z22. And very often z12 and z21 are symmetric. Not always. The kind of problems
we generally do here, they will be, and it will be generally symmetric if your

coordinate system is measured from a static equilibrium position.

So if you've been doing 2001, there's a thing called Maxwell's reciprocal theorem,
which proves this for the stiffness matrix. They essentially need to be measured
from static equilibrium positions, but for today's example, this is indeed symmetric.

Minus ¢2, minus ¢2, minus k2, minus k2. 0, 0. Everything is symmetric.

So we'll take advantage of that, and I'll write out one of the components here-- z11,
for example, when you collect the terms together, is in general, it would be minus
omega squared m11 plus i omega c11 plus k11, the corner elements of these three
pieces. And in this problem, that's minus omega squared m1 plus i omega c1 plus
c2 plus k1 plus k2. You just substitute in this, this, and this. So that's z11, for
example, and the other ones you can figure out what each of the other terms would

be.

All right, so we've said that we want to know what the x's are. And we know that we
can get that by doing z inverse times F. And this gives us our definition. This z
inverse is our H, our transfer function matrix, times F. So just by getting z inverse,

we get this little set of four transfer functions that we're interested in.

So His an N by N matrix of transfer functions. So in a two by two-- or for the two by
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two case, our N equals 2. We know we can write out directly what z inverse is. And z
inverse-- z22, minus z12, minus z12 when it's symmetric, z11, all over-- how should
| write it? All over the determinant of z. So this is the determinant. So the
determinant of z [INAUDIBLE] do these double bars. So this over the determinant is
the inverse of that matrix, and this gives you a new result, which is H11, H12, H12,

H22, where Hij-- this is the response at i per unit force at j.

And I've made this-- | took advantage of the symmetry here, but this one would
normally be called 21, so this is response at 1 caused by the force at 1. So we have
forces in our problem. One is the force on the main mass. So how much response
do you get at the main first mass due to the force on the first mass? This is how
much response you get on the first mass due to the excitation in the second mass.
Response on the second mass due to the excitation on the first. Response in the
second mass due to the excitation on the second mass. So you get four possible
contributions here. And the determinant of z for a two by two is also very

straightforward. z11, z22, minus z12 squared.

So we can and will work out exactly what the algebra tells us for this two by two
case. So we've already been discussing it, but what do you expect. Let's say let's
look at this one. What do you suppose the response at 1 due to a harmonic
excitation at 1-- what do you think the sketch of the magnitude of H11 of omega

would look like as a function a frequency?

Will C12 and C21 always be symmetric?

No, but for the kind of problems we do, probably. And if it's simple beams, or
masses connected by springs, if you choose your generalized coordinates in a way
that is, for example, measuring the displacement of each mass from an inertial
static equilibrium starting point, it'll be symmetric. But if you measure the-- even in
this two degree of freedom, | can make it non-symmetric just by choosing the
coordinate for the second mass as to be relative to the first mass. Soon as you do

that, it makes it non-symmetric.

You can still solve for transfer function and everything, but it gets messier. Though,
10
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notice | picked coordinates-- x1 relative to the inertial frame, x2 relative to the same
inertial frame-- and they're both measuring displacement from a static equilibrium
position. Then they are symmetric. And there's the determinant we need, and this
determinant-- see, this is divided into all four of these terms. So these four transfer

functions all share the same denominator. They all have the same denominator.

So | just want you to use your intuition. Tell me what this is going to look like. What's
it look like for a single degree of freedom system? It's HxF for a single degree of
freedom-- it's H11 for a single degree of freedom system as a response of those
systems to a harmonic force on that single mass, and that looks like what? Peak,
right? This one-- what do you think it's going to look like? Show me again. OK, but |

see one peak. How many peaks?

Two.

Why?

Because it's two degrees of freedom.

Two different natural frequencies. This thing is going to look something like this, and
| don't know quite how it behaves in here, but it's going to do that for sure. It's going
to have two resonances-- this one at omega 1, this one at omega 2. We already
know that because we did it by modal analysis. We know each mode is going to

have a resonance in it.

OK, so let's find out exactly what it looks like. So for this two degree of freedom
system, there's an F1 and an F2, and we're looking for x1. So x1 x2 here equals
H11, H12, H12, H22 times F1 F2. So if | want to solve for x1, H11 F1 plus H12 F2.
And for the problem I'm going to solve today, I'm going to let F2 be 0, just to keep it

simple, but also to address the original question we ask the doctoral students.

You have a force on the first mass. Can | add a mass and spring to it in such a way
that | can make the response of the first mass go to 0. So there is no second force.
There's only a first force, and so this term goes away. And so this problem, x1, is

H11 F1. Therefore, we need to know what H11 looks like.
11
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So H11 is going to be z22 divided by the determinant. So x1 is going to be z22 over
Z11, Z22 minus Z12 squared times F1. And actually | can do this so-- and I'm going
to let, for now, damping be 0, because it also simplifies it for the purposes of
illustration today. And that's how | was posed to the doctoral student. Didn't even
show any damping. It was just a simple system, a string and a mass. How can you

do this? So we'll let the damping be 0 and that considerably simplifies things then.

So Z11 is minus omega squared m1 plus k1 plus k2. z22 minus omega squared m2
plus k2. And z12 just minus k2. So now these are pretty simple expressions, and all
| have to do is plug them in here. And notice what's going to happen. z11 times z22-
- that's something involving omega squared times another term involving omega
squared. It's going to give you a polynomial and omega to the fourth. This is the

polynomial that has two roots, and the two routes are?

[INAUDIBLE] frequencies.

Yeah, natural frequencies. The determinant of the z matrix is the same problem you
solve when you've found the roots of the characteristic equation. It is the
characteristic equation for the system, the denominator, the determinant of the z
matrix. Therefore it's going to be a fourth order equation in omega. It'll give you two
routes for omega squared. They're your two undamped natural frequencies when
we leave damping out of this expression, and they'd be damped-- the damped
expressions-- they'd have complex stuff if you leave in the damping. But they give

us our two roots, and they go in the denominator. Yeah?

If we set the denominator or the determinant of the matrix equal to 0 and solve, you

get the modal frequencies?

Yeah. That denominator is the characteristic equation that we did when we set it up
to do the natural frequencies. Same equation. So we know that this thing has two
roots, one at each of the natural frequencies. And when omega is at a natural
frequency, what is the value of this characteristic equation? Well, no. The

characteristic equation. Think of the denominator. Add a root, that expression goes
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to? 0. So you're dividing by 0. That's what causes the peaks. That's where the
peaks come from. That's where the denominator goes to 0, and that's at the natural

frequencies.

OK, so x1 for this problem equals H11F1, and now we can just write it out. H11 is
minus omega squared m2 plus k2 times F1. And the denominator, the characteristic
equation, is minus omega squared m1 plus k1 plus k2 times minus omega squared
m2 plus k2 minus k2 squared. So this whole thing down here-- there's your
characteristic equation. You multiply it out. You get your fourth order polynomial.
Solve it. You get two roots, but this is now a total expression for the response we

were looking for.

So right away this gives me the answer to the question that was posed to the
doctoral students. So is there a value-- can you set k2 and m2 such that you can
make the response of the system 0 at a particular omega? All you have to do is

make the numerator go to 0, right?

So if you make this go to 0, x goes to 0. So x1 equals 0 when minus omega squared
m2 plus k2 equals zero, and that happens when k2 over m2 equals omega
squared. So how many-- once you set k2 and m2, how many frequencies does this
happen at? At how many different operating points can you make the response of
that main mass go to 07 Well, just one. Once you choose k1 and m2, whatever
you've chosen to be, they give you some value of omega. And when | said | was
kind of vague about what happens here, this is H11. Looks like that. Right here is

when omega squared equals k2/m2.

So when it's at the frequency that makes the numerator 0, wouldn't it also-- | don't

remember. Would the denominator be 0 also?

No. No. Because, look at the picture here. Where are the two natural frequencies of
this system? There's one here, and there's one here. And that's when the
denominator goes to 0. When the denominator goes to 0, the response goes to
infinity with no damping. So the system has two natural frequencies-- one to either
side of this point.

13
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So I've picked kind of a particular example to illustrate the use of a transfer function,
and the fact that you can have transfer functions for multiple degree of freedom
systems, and they essentially become transfer function matrices. And you use what
you need, and for this problem, we needed H11. We worked it out. There it is. This
is a complete equation that describes, for me, the behavior of mass 1 per unit input
force as a function of frequency. And it will always have a point right there that it

goes to 0.

And we don't have any damping in here, so intuitively, what do you think damping

will do to this plot? What's the first thing it does to the peaks? What? They become?

[INAUDIBLE].

Finite. And so the small damping, you're going to have very high tops. More
damping, they're going to be lower. So damping especially affects the peaks.

Damping will also pull this off the bottom a little bit. It won't perfectly go to 0.

So | want to do a very particular case. So an obvious one is your original system. It
might be just a mass spring with a rotor in it that's unbalanced, and it's running near
resonance, and it's vibrating like crazy. A single degree of freedom system vibrating
like crazy. Can | put on a second mass spring and stop the motion? Well, we can

theoretically.

And we'll just say let's let the problem we're trying to solve-- that first system had a
natural frequency. I'll call it cap omega n that was the square root k1 over m1, and
I'm going to let that be equal to square root of k2 over m2. So I've now chosen k2
and m2 such they're exactly at the natural frequency of the original single degree of
freedom system. So this is the original system, k1 m1, and it has that natural
frequency. And now I'm going to stick on a second mass, k2 m2, but the value
k2/m2 of the second little system-- by itself, it has the same natural frequency as the
first if you want to think of it that way. If | make this fixed, what's the natural
frequency of that mass and spring? Same natural frequency. I'm just making it that

way.
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So this is now my system. That's the parameters, and now we can-- I'm going to
give you a plot of the response of that particular system. You know how we non-
dimensionalize the single degree of freedom transfer function? We set x divided by

the static motion. | want to do that again here.

So let's look at this system. It's a two degree of freedom system. It has a force F1
on it, and as the frequency goes to 0 and has displacement x1 and x2-- so at
omega equals 0, x1 equals x1s. I'll call it x1 static. And how much is it? So what's
the static displacement at 0 frequency of this system to that force? Come on. It's
just a spring and a force. How much will that spring stretch when you put a force F1

on it?

[INAUDIBLE].

F1/k. So x1 static equals F1/k1. And F2 is 0. There's no F2 force. So how much is

x2 static? There's no forces on the second mass. How much will it move?

[INAUDIBLE].

It just moves the same amount as a first mass. So this is x2 static, because the
forces on the system are F1 and 0. There's no force in this. It's not going to do

anything to that spring. It'll just move with the whole system.

So | want to plot x1 over x1 static. In general, x1 is a function of frequency-- is F1
times-- and I'm going to do the magnitudes here-- times the magnitude of H11. And
I'm going to divide that by F1 over k1. So the F1's go away. k1 comes in the
numerator. This looks like k1 h11. So a plot of k1 magnitude h11. We know roughly

what it's going to look like. It has a peak. It has a 0. It has another peak.

Over here, this plot goes to 1. There's x1 over-- this is also x1 over x1 static. Same
thing. It goes to 1. Here it goes to 0. Here is omega 1. Here is omega 2. And right
here you're at the original cap omega n, because that's the way we've designed this
thing, and we know this is the way H11 behaves. It goes to 0 at the value we've

chosen for square root of k2/m2.
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So we started out with an original system that had a natural frequency here. k1/m1
was right here. We stuck on this second little mass, and it made into a two degree of
freedom system. It no longer has a natural frequency there. It has a natural
frequency below it, and a natural frequency above it, and a 0 right where the

original natural frequency was.

Imagine what's going on in the system. You've got this force being applied to the
first mass, and the first mass isn't moving. Do you think the second mass is moving?
Think about the free body diagram of the first mass. F equals ma. There is a force
on that first mass-- F1 cosine omega t-- and it's not moving. Mx1 double dot is 0. So
in order for the thing not to move, there's a force on it. There must be some other

force exactly canceling it. Where does it come from?

Mass two.

Mass two through the spring. OK, so I'd also like to know, what is x2? Well, x2 from
our transfer function matrix is the response of 2 due to a force at 1 times F1, plus a
response at 2 due to a force at 2 times F2, but that second term is 0 because F2 is
0. That's a one term expression, and H21 is z11 over the denominator. And Z11--

S0 x2 is going to look like that.

| wrote that wrong. This is not z11. It is z minus z12 like that. And if you work that
out, it's F1 times k2 over the same denominator, but let's evaluate-- here's our-- this
is the frequency we've been interested in. Let's evaluate the response of x2 right at

this operating point. So let's evaluate this at omega equals cap omega n.

So that's k2 down here minus omega squared m1 plus k1 plus k2. It's the same
denominator as always. k2-- I'm not going to write it out. It's exactly the same thing
as before, but | want to plug in to this denominator the operating frequency. We're
going to operate at cap omega n, which is k1/m1 squared-- square root of k1/m1, or

square root of k2/me. I'm going to plug in in this, and let's see what we get.

And I'm going to let omega equal k1/m1 or k2/m2. It's the same thing, and I'm plug

them in whatever is convenient. So here I'm going to put k1/m1, N1 and the m1's
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are going to cancel. I'll be left an k1. F1 over k1 and down in the denominator, this
term turns into k1/m1, so that's minus k1 plus k1 plus k1. Those two cancel. | just
get a k2. Over here, I'll use minus k2/m2 times m2 plus k2, and that gives me a
minus k2 plus k2. This whole thing goes to 0, and I'm left with minus k2 squared and

in the denominator a k2. This whole thing turns into F1 over k2.

So the total response of that second mass at this operating frequency is just F1
over k2. And | would like to plot it as what does x2 over x1 static-- and x1 static and
x2 static are the same. Well, that is F1 over k2 over F1 over k1. The F1's go away,
and | get k1/k2. That also happens to be m1/m2, and it's a quantity we call 1 over

mu. And we have just designed what's called a dynamic absorber.

And a dynamic absorber is a little device you can use to stop vibration. So when we
were talking about vibration isolation and vibration mitigation a few days ago and |
said you've got some rotating imbalance [INAUDIBLE] or something to shake, well,
give me three ways of solving it. We said balance the rotor. What were the other two

ways of perhaps reducing the vibration?

Adding a [INAUDIBLE] damper?

Yeah, but also if you've got something that's shaking like crazy, and it's putting
fibrillation into the floor or into the table, you can isolate it with a mass and a spring,
or a microscope over here that's vibrating like crazy, you can isolate it with a mass
or a spring. So this is to stop a vibration isolation, which is guaranteed to be on the

final-- the simple practical applications of single degree of freedom stuff.

So we have three ways-- fix the rotor, isolate it with a mass and a spring, isolate the
sensitive instrument mass and a spring. Now you have a fourth way. If it's a
particular operating frequency, we can operate right here with this thing called the
dynamic absorber. This mu quantity is called the mass ratio. That's m2/m1.
Basically, these things are real. They're actually used in real machines, and usually
you can't-- this dynamic absorber thing you stick on there can't be as big as the
original system. It's going to be some small fraction of the original system size-- 5%

or 10% if you're lucky. So the bigger this thing is, you'll find out the better it works.
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AUDIENCE:

PROFESSOR:

So how much is this little second mass bouncing around? Well it's bouncing around
compared to x1 static in the ratio of k1 to k2, which is this 1 over mu quantity. So if
mu is 10%-- if you've added the second mass, it's 10% the size of the first one. 1
over mu is a factor of 10. So this transfer function basically looks-- do | have some
colored-- so the x2/x1 transfer function basically behaves the same right here and
pretty much the same way out here. And in here, it comes down like this and comes

back up. And this height right here is 1 over mu.

So the smaller you make this thing, the tinier you make it, the more it has to shake
to force the first mas to go to 0. So basically, the reason this thing works-- the free
body diagram-- at the 0 point, the main mass m1, x1 equals 0 here. It's not moving.
It's got a force acting on it that is some F1 cosine omega t. It's got a spring force
acting on it from this second mass going. Here is m2 over here, and it's going back
and forth like crazy putting force through this spring. And the spring force had better

be exactly equal to that.

So the F spring is going to be equal to minus F1, and that will be equal to x2 times
kx2. The second mass has to move enough that it'll compress the spring enough
that it provides a force equal and opposite to this one so that it's in equilibrium and it

doesn't move. All right. Yeah?

[INAUDIBLE].

Yeah.

So the building, if you want the masses to be fairly equal to each other, how is that

ever going to happen?

It's not. Not usually. Dynamic absorbers are used in real things, like the Hancock
Building. And they're used in engines. They're used in all sorts of little devices that
you're not aware they they're there. And you have to usually hide them inside the
footprint of the original device. So you don't want them-- for a real thing, you don't
want to have a pump with this huge appendage on it. It's just not practical. So they

tend to be small.
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And so, as a consequence, in order to make them work at this particular frequency,
you have to vibrate like crazy. So the design cost of one of these things is you have
to design to be able to allow this second mass to shake like all get out. Now, how
many frequencies does this work at? Once you've designed it, it only works at one
frequency, so this is only useful for something that has a fixed operating frequency,
like a synchronous motor. This isn't a good thing for something that has a range of
frequencies over which it can work, but it is a different, more complicated theory.
There's a type of dynamic absorber that you can make work over a wide range of

frequencies.

I need to tell you one other thing. When we put this thing on, the original natural
frequency of the first system was here, and it created two new ones. You had a

further question.

So how does making it vibrate like that help? It's only going to work at that one
frequency, and you're always going to have that gap. So making it vibrate really

fast, how does that help at all?

If, for some reason, you really don't want that first thing to shake, this makes it stop
shaking at that frequency. So for example, one of the widest distributed textbooks in
the world was written by an MIT professor named Den Hartog, and it's called
Mechanical Vibration. 1t was written in the 1930s. It's got a wonderful chapter on
dynamic absorbers in it. And the example that he gives of a real device that actually
uses one was an electric hair clipper that a barber uses. The head on a hair clipper-
- it has to go back and forth like this in or to cut the hair. That is an oscillating mass,
and you're going to feel it. You're going to feel the mass times the acceleration-- ma

omega squared acceleration-- at the frequency it runs that.

So they did a clever thing. They built inside the case of this thing a little second
mass and spring. And so that when you're holding the clippers, it doesn't feel like
it's-- OK? So that was an example. It was actually a great example in his 1938

textbook.
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And just so you know, you really do have two natural frequencies when you do this,
and I'll write them like this. Omega 1 squared and omega 2 squared are the original
frequency squared times 1 plus mu over 2 plus or minus mu plus mu squared over
4 square root. So as your mass ratio gets bigger, the two frequencies move further
and further apart. When the mass ratio is 0, this quantity-- they have two natural
frequencies. It goes to 1 natural frequency. It's a single degree of freedom system,
and it's at the original value. As the mass ratio gets bigger and bigger, these two
roots-- this one and this one-- as you add mass to that second system, they spread
apart. And the bigger the mass ratio, the further apart the two natural frequencies

become.

So we've got 10 minutes left, and | have a demo which illustrates this thing. It's a
little delicate to make it work, because actually it was really frustrating. | had it all set
up. It worked great in my office. Came in 10 minutes early today to set it up, and the
table in here is so flexible | can't make it behave like a fixed surface. So | tweaked i,
and | think I've got running now, but now what it is is a beam with my pen on it, my
little squiggle pen. And you've seen this before. It's a rotating mass. It's a static

imbalance. It shakes this beam.

And I've added to it a second little beam. It's a little blade of steal with a heavy
magnet on it. That's my m2. This is my k2-- is this little beam. This is the original
system, a mass, it's close to a natural frequency, and the rotation rate of the
eccentric mass is right at the natural frequency of this beam. So because it's
delicate to set up, I've got to show you the system first with the second mass
attached to it, and | think I've got it tweaked so that it'll sit there. It's right at the
operating point, and you ought to see the second mass moving like crazy, and the
original mass, the beam, not moving much at all. So let's see if we can make it work.

We're going to need to kill the lights.

And you can see in here the rotating mass going around and around, and so | have
the strobe light detuned just a little bit so that you can see the system. It's not quite
synchronous. Watch this little white blob out here. You see it going up and down.

That's your second mass, and is the main beam-- it's moving a little bit, but not
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much. It's got a little damping, and so it isn't perfectly down at that 0 point, but very

close. So this is the system operating close to that null point.

So now if | remove the dynamic absorber, the second little mass spring system,
then the main mass and the beam ought to shake like crazy. Just changing the
tuning a little here. So now I'm going to remove the absorber. All right? And now it's

going like crazy. So that's an illustration. You can come up with the lights.

Now, you hear beating? This little pen-- this little rotor in here is driven by a little DC
motor and a single AA battery, and it's not feedback controlled. Its frequency can
vary, and it isn't that powerful. So as this thing starts moving up and down, it actually
takes real torque to make that weight go around while this whole system is
accelerating up and down. And the motor just isn't up to it, just isn't powerful
enough, so the speed changes. This thing can't hold constant frequency. So that's

the demo. Questions?

So we've kind of embedded in this lecture-- this lecture was to introduce you to the
idea that you can write a transfer function for a multiple degree of freedom system--
has embedded in it all the natural frequencies of the system. When you use a
transfer function to calculate the response of the system, you are getting the
contributions of all the modes at once. So you essentially solve the equations of
motion directly. So you now have seen there's two ways to go about analyzing
multiple degree of freedom systems-- the technique known as modal analysis-- one
mode at a time and then add it together. Or like with transfer functions, where
you're just solving the whole thing at once, and each transfer function has in it all of
the information about all of the modes of the system. So if it's a five degree of

freedom system, you're going to see five peaks out here. Questions?

So this is for [INAUDIBLE]? But initially, since you have a [INAUDIBLE], does it have

to start out moving to be an [INAUDIBLE] moving and then it stops.

So there's going to be a transient phase, sure. Any system, when you start it up, is

going to have transients, and the transients are the equivalent of initial conditions.

So displacement and velocity-- and the response of a linear system that vibrates,
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that has natural frequencies to a set of initial conditions, is vibration at what

frequencies?

Do you know how they overcome this in helicopters? [INAUDIBLE] that we saw at

the beginning of the year?

Yeah, the helicopter-- so | want to answer the question. Response to that transience
is at the natural frequencies of the system, maybe some combination. The original

displacement requires contributions of several modes. You'll get decay contributions
at each of the natural frequencies, and once they've died out, this motor has started
up. The thing will settle into what we call steady state response, and it will only be at

the excitation frequency.

And | haven't show you anything about-- can you solve the equations of motion from
start up at time 0 through the whole messy transient phase to steady state? Sure.
And we haven't talked at all about that. And actually, for vibration stuff, it is very
important. Steady state answer is important. The transient answer is pretty
important, and for you to have a feeling for that, you actually know quite a fair

amount about the basic concepts of how things vibrate now.

Now, your question about the helicopter-- so if you have a uniform helicopter blade-
- they rigged that to do what it did. | don't know what they were experimenting with,
but if you do-- there's a problem that I've actually given in a vibration course. If you
design a really simple helicopter that has a uniform blade. It's a uniform rod, and it's
pivoted at the center, and you spin it up, and if you spin it fast enough-- if you spin it
slowly, it will droop because of gravity, but if you spin it fast enough, r omega
squared is a lot bigger than g. And the thing flattens out, and the blades are going

around and around.

The natural frequency of that system is exactly the rotation rate. A uniform blade
pivot at the center, going around fast, has a natural frequency like this. It happens
to be exactly at the rate of rotation. So any perturbation will start it doing bad things.
Helicopters are never ever designed like that. The helicopter has a rotor disk in

here, has a finite radius before the pin, and then the blades are out here. The pin
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around which-- and that changes the resonance frequency. And of course, you can

change the mass distribution in the blade and so forth.

So what they had done in that case to rig it so the thing beat itself to death, | don't
know. But there's good design practices with helicopters so that the blade frequency
is not at the rotation rate, because at rotation rate, you're going to have a lot of

excitation, hitting turbulence in the air and so forth. Yeah?

So you mentioned that you use something like this in the Hancock Building, but |
would imagine that the wind force on the Hancock Building does not have a uniform
frequency all the time. So is the idea that [INAUDIBLE] control based on resonant

frequency [INAUDIBLE].

I've forgotten the correct name now, even though I've used these many times now.
The optimally tuned and damped dynamic absorber is sort of the second level of
dynamic absorber design. Typically, a two degree of freedom system looks like that
if it's lightly damped, but you can design that second mass spring and a damper so
that you can make the transfer function, H11 here, look like this, where you get the
two peaks are of equal height, and the worst-- and you can design them so that the
worst case amplitude response over here is pretty low. x1 static is square root of 1

over 1 plus mu or something like that.

So the bigger you make this, the better the performance, but you have to have
optimum damping, and you have to have optimum tuning. And tuning means, if the
there were-- we tune this thing so that k2/m2 was exactly equal to a particular
frequency, in this case k1/n1. But for the optimally tuned and damp dynamic
absorber, you actually tune things-- it's tuned a little differently. You put damping in
it, and you make it behave pretty well over the entire frequency, range rather than

almost perfect at one frequency.

And the Hancock Building had its transfer function, so to speak, without the dynamic
absorber-- it has many, many peaks, but it had two problematic ones that were very
close together, and they were at about 0.8 radians per second, and 0.81, or

something. And this was bending, and this was torsion. And at these two
23



resonances-- and the wind would come along, and it would excite both of them. And
the one resonance was just the same as this thing. It just bends. And the other

resonance was the first mode in torsion.

So if you were standing on one-- and a building cross section is a funny-- the
Hancock Building looks kind of like that in cross section, and so it would rotate in
torsion and deflect in bending. So it would be rotating and deflecting, and if they
were in equal amounts and they're close in frequency, if you're standing up there,

what would you feel? They would beat. The motion would beat.

You'd get a lot of motion, because if you are on one end of the building, you'd get a
lot of torsional motion out here combined with the bending motion. And then they
would cancel, and then the beat would build up again. And so that was what was
happening in the building. And they put in two, so on the 58th floor on each end
they put in a mass spring system and over here another one so that they would
resist the torsion-- actually, really | lined them up the wrong way. They line up this

way. So it has two of them.

They can resist both the bending and the torsion. They each weigh 300 tons, and
they it's a box filled up with 50 pound lead bricks. And the box is about-- it's been 20
years since | was up there, but what | recall is this like 8 by 10 feet yea tall. And it
slides on a pressurized oil film, and the spring on it is a big pneumatic spring, a big
air spring, and a computer runs the whole system. It's shut down until the wind gets
above 40 miles an hour, and then turns it on. And it's actually kind of self tuning. It
can optimize itself, and then it'll sit there, and it's designed to do this, because this
building has these two problem frequencies. And so it has been designed to

address both of them.

All right, | think | have to get out of here for the next class. See you next Tuesday.

Last lecture.
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