
2.003 Engineering Dynamics 

Problem Set 11 

Problem 1:  Torsional Oscillator 

Two disks of radius r1 and r2 and 

mass m1 and m2 are mounted in 

series with steel shafts.  The shaft 

between the base and m1 has 

length L1 and the shaft from m1 to 

m2 has length L2.  The shafts have 

cross section polar moments of 

inertia, Jzz1 and Jzz2.  They also 

have shear moduli, G1 and G2.  The 

torsional spring constant of each 

shaft is given by 1 1 2 2
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a) Find the equation of motion of the system and write it in matrix form.  

b) Find the undamped natural frequencies of the system 1 2 and .   

b) Find the undamped mode shapes of the system.  

Concept question: If the two rotors are given initial torsional deflections, which are exactly in 

proportion to the mode shape of mode 2, what frequency components do you expect to see in the 

resulting transient response of the system.  (a) 1  only, n , (b) 2  only,n  (c) 1 2 and .n n   

Concept question answer:  (b) is correct.  If the initial condition is in the shape of one mode, 

only that mode participates in the response, and it does so at its natural frequency. 

Problem 2: 2 DOF cart with a slender rod  

This exact system was examined in problem set 10.  A slender rod of length l (2m) and mass 

m2(0.5kg) is attached to a pivot at A to a block of mass m1(1kg). In problem set 10 the pivot was 

assumed to be frictionless.  In this problem the resistance at the pivot is modeled as a linear 

torsional damper with torsional damping coefficient c =0.025 N-m-s/rad.  The block moves 

horizontally on rollers.  The position of the block, relative to the un-stretched spring position is 

1



described by the x coordinate. The block is connected to a fixed wall by a spring of constant 

k=10 N/mwith an un-stretched length lo(0.5m),and a linear damper with damping coefficient b 

=0.05N-s/m. 

 

The linearized equations of motion for the 

system are the same as found in problem set 

10 except that an external torque, - c ,  

resulting from the linear damper at the pivot 

must be included in Equation 2 below, the 

rotational equation of motion: 
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In the previous problem set the linearized equations were found. When the additional torsional 

damping term is included the linearized equations become: 
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be expressed in matrix form:

0,  where [M], [C] and [K] are known as the 

mass, damping and stiffness matrices.
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Substitution of the physical quantities in these equations of motion yields: 
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units, a very compact statement of the equations of motion results:
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In Problem Set #10 the undamped, linearized equations of motion were used to find the 

following undamped natural frequencies and mode shapes.  
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These mode shapes have been normalized by dividing both elements of the mode shape by the 

top element,x. This forces the mode shape to be normalized such that the top element is 1.0.  

This information is used in this problem to guide the student through a step by step application of 

the method of modal analysis. In modal analysis the total system response is found in terms of 
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each modes contribution to the total.  The first step is to define a matrix of mode shapes [U]. 

a) Express the mode shapes, given above, as a matrix in the following form: 
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  [U] is the matrix of mode shape vectors, which in 

this case has been normalized so that the top element of each vector is equal to 1. Find U
T
 the 

transpose of U, and find the inverse of U.  The last is most easily done numerically with a 

program such as Matlab.  But for a 2x2 matrix it may also be done directly by hand computation.  

Refer to any linear algebra text. 

b) Compute ,  ,  and ,T T TU MU U KU U CU the modal mass, modal stiffness and modal damping 

matrices. These matrices should be diagonal to within the accuracy of round off errors.  Are 

they?  If not you may not have carried enough significant digits when entering the mode shapes 

in carrying out the computations. Considerable precision is required.  

c) The system is given an initial displacement 0.0, 0.2 .o ox radians   Find an expression for 

the transient response of ( ).t  

d) A horizontal force 2( ) cos( )o nF t F t is now applied to the cart. Find the steady state 

response, ( ).t  Note that the excitation frequency is at one of the natural frequencies of the 

system.   

Concept Question: Applying the concept of modal analysis, which mode is likely to dominate 

the steady state response for the excitation prescribed in part d?  

(a) mode 1, (b) mode 2, (c) Neither  

Concept question answer:  (b) is correct.  The frequency of excitation is at the natural 

frequency of mode 2.  With light damping the mode with resonant response will dominate.  

 

Problem 3: Pump with an imbalanced rotor  

For a system similar to that in Problem 2, a servo motor, mounted as a part of the cart, drives the 

rod at a constant rotation rate ,  such that ( ) .t t   In this case, Let the length of the rotating 

rod be  l =0.02 m and m2 =0.1 kg. The other values are unchanged. This system may now be 

represented with a single equation of motion, because one coordinate is sufficient to describe the 

response of the system.  That coordinate is the motion of the cart x(t).  The rotation of the arm is 

no longer an unknown response, but a specified input.   
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This system might be a pump with a statically imbalanced rotor. For the purpose of this problem, 

assume that the spring and damper connecting the pump to the wall have been added in an 

attempt to vibration isolate the pump from the 

wall.  This is intended to reduce the dynamic 

force transmitted to the wall.  The rotating 

mass may be modeled as an external harmonic 

exciting force in the equation of motion.  Let 

Fo(t) be the equivalent horizontal component 

of this force. 

a) Find and expression for Fo(t), the horizontal 

component of the force caused by the rotating 

mass.  

b) Compute FT/Fo, the ratio of the steady state 

magnitude of the force transmitted to the wall 

to the magnitude of the exciting force caused 

by the rotating mass for the following cases: 0.1, 1.0, 5.0.
n

or



  

Concept question: For what value of 
n


is the force transmitted to the wall the greatest?  

(a) 0.1, (b)1, (c)5  

 

Concept question answer:  (b) is correct.  When the damping is much less than critical, at 

resonance the response will be the greatest and the forces transmitted to the wall will also be 

greatest.   

Problem 4: Cart with a massive spring  

A cart of mass M is attached to the wall by a spring of constant k, mass m and un-stretched 

length lo. a) Find the equation of motion of the system accounting for the mass of the spring.  

Hint: Compute the kinetic energy 

of the system and account for the 

kinetic energy of the spring. Note 

that the velocity of the spring 

varies from zero at the point of 

attachment to the wall to x  at the 

point of attachment to the moving 
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mass. 

b) Compute the ratio n

no




where 

n is the natural frequency of the system accounting for the 

mass of the spring, and 
no  is the natural frequency not including the mass of the spring.  

Concept question: Do you expect the mass of the spring to:  

(a) increase the computed natural frequency, (b) decrease it, (c) not affect it? 

 

Concept question answer:  (b) is correct.  Adding inertia to a system lowers the natural 

frequency.  
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