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PROFESSOR: Let's get on with some dynamics. So the place I'm going to begin is just a comment

about mechanical engineering courses. The first, and you may have heard this

already in classes, you'll be taking subject 2001 if you're Course 2 majors through

2009, and if you're 2-A, most of the odd ones. But the subjects 2001 through 2005

are really basically engineering science subjects that are all foundational to

mechanical engineering, and they all have a common or property through them.

And that is that we make observations of the world, and we try to understand them.

We pose problems.

Why-- 400 years ago, is the sun in the center of the solar system or not? And we try

to produce models that explain the problem. So here's the problem, the question of

the day. We try to produce models to describe it, and we make observations,

measurements, to see if our models are correct. And if we feed that information

back into the models, we try out the models, we test it against more observations,

and you go round and round. And this is kind of the fundamental-- this is the way all

of these basic first five subjects use, basically, this method of inquiry.

So in 2003, the way this system works, my kind of mental conception of this

modeling process, is three things. And this applies to you. You have a homework

problem. How do you attack a homework problem? You're going to need to

describe the motion. You're going to need to choose the physical laws-- pick, I'll call

it because it's short-- the physical law that you want to apply like f equals ma,

conservation of energy, conservation of momentum. You got to know which physical

laws to apply.

And then finally, third you need to apply the correct math. And that's really-- most

dynamic problems can be broken down this way. That's the way I like to
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conceptually break them down. You might have another model, but this is the way

I'm going to teach it.

Can you describe the motion, pick the correct physical laws to apply to the problem,

and able to do the correct math, solving the equation of motion, for example. And all

this is what fits in our models box. And we test it against observations and

measurements and improve those things over time.

So I'm going to give you-- how many of you like history? I find history and history

technology kind of fun and interesting. So I'm going to throw a little bit of history into

giving you a little quick course outline of what we're going to do in this subject this

term.

Because the history dynamics and what we're going to do in the course actually

track one another remarkably closely. So if I ever gave you a bunch of names like

Galileo, Kepler, Descartes, Newton, Copernicus, Euler, Lagrange and Brahe, which

one comes first? Take a guess.

AUDIENCE: Copernicus.

PROFESSOR: Good. Copernicus.

So Copernicus was Polish, and the story starts long before then, but in about 1,500

Copernicus said what?

AUDIENCE: [INAUDIBLE]

PROFESSOR: The sun's the center?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Or the Earth is the center?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Which did say? Yes, so Ptolemy, back around 130 AD said, well the Earth's the

center of the solar system. Copernicus came along and said, nope I think that, in
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fact, the sun's the center of the solar system. And it for the next 100 years-- more

than 100 years, couple hundred years-- there was a really raging controversy about

that.

So Copernicus, Brahe Kepler-- so I'm putting them in rough chronological order

here. Now, I'm going to run out of board. Oh well. Galileo, Descartes-- I'm gonna

cheat-- OK, Descartes, Newton, Euler, and Lagrange. So we're going to talk and

say a little bit about each of them. And now that I'm-- like I told you, I haven't used

this classroom before so I gotta learn how to play this game. I need to be able to

reach this for a minute.

So Brahe, he was along about 1,600. Brahe was the mathematician that wrote-- the

imperial mathematician to the emperor in Prague. And he did 20 years of

observations. And he was out to prove that the Earth was the center of the solar

system.

And then Kepler actually worked with him as a mathematician, and then took over

as the imperial mathematician. And he took Brahe's data-- 20 years of astronomical

data without the use of the telescope-- and used it come up with the three laws of

planetary motion. And so his first and second laws were put out about 1609.

And one of the laws is, like, equal area swept out in equal time. Have you hear that

one? That actually turns out to be a statement of conservation of angular

momentum, which we'll talk quite a bit about the course.

Then came Galileo, and I'm not putting their birth and death dates here. I'm kind of

putting in a period of time in which kind of important things happened around him.

So 401 years ago a really important thing happened. Galileo, in 1609, turned the

telescope on Jupiter, and saw what?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Four moons, right? And then they really started having some data with which to

really argue against the Ptolymaic view of the solar system.
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Descartes is an important figure to us. And in the period of about 1630 to 1644-- in

that period Descartes began what is today known as analytic geometry. He was

geometer, he studied Euclid a lot. But then he came up with a Cartesian coordinate

system, xyz, and the beginnings of analytic geometry, which is essentially algebra,

coordinates, and geometry all put together. And we are going to make great use of

analytic geometry in this course.

Then came Newton, kind of in his actual lifespan, 1643. It's kind of interesting that

he spans these people. And in about 1666 is when he first-- the first statement of

the three laws of motion.

Then Euler, and he's 1707 to 1783, and that's his lifespan. Euler came up-- Newton

never talked about angular momentum. He mostly talked about particles. Euler put

Newton's three laws into mathematics. Euler taught us about angular momentum,

and torque being dh dt in most cases. He's the most prolific mathematician all time,

solved all sorts of important problems.

And then finally, is Lagrange. And Lagrange, in about 1788, uses an energy

method, energy and the concept of work to give us equations of motion.

So the course, 203, stands on the shoulders of all these people. But with Descartes,

we start with kinematics, really. This is analytic geometry. And that's where we're

going to start today is with kinematics.

And very soon thereafter, we're going to review Newton, the three laws, and what

we call the direct method for finding equations of motion. Conservation of

momentum, fact that force-- some of the forces on an object equals mass times

acceleration, or it's a time derivative of its linear momentum. And we use that to

derive equations of motion.

So we're going to go kinematics into doing the direct method to getting equations of

motion. And we go from there into angular momentum, and what Euler gave us--

the same thing, torque. We're going to do quite a lot with angular momentum.

Because I know you know a lot about f equals ma and you've done lots of problems
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801 applying that. You've done some problems on rigid body rotations. But I think

there's a lot more you need to understand about this, and we'll spend quite a bit of

time on it.

And then near the last third the course we shift, because Lagrange said that if you

just write down expressions for energy, kinetic and potential energy, without any

consideration of Newton's laws and the direct method, you can derive the equations

of motion. That's pretty remarkable. So there are actually two independent roots to

coming up with equations of motion.

And in this course, about the last third of the course, we're going to teach you about

Lagrange. And then all these things are going to be-- one of the applications that

are important engineers is the study of vibration. So we'll be looking at vibration

examples as we go through the course, and applying these different methods to

first, modeling, and then solving interesting vibration problems.

Which brings-- ah, I have a question for you. So how many of you were in this

classroom last May with Professor Haynes Miller, and I showed up one day and we

talked about vibration? How many remember? I told you I was going to ask this

question, right? Great. OK, it's good to see you here again, and we will talk about

vibration in this course.

So there's kind of the subject outline built on the shoulders of these people in history

that made important contributions to dynamics. Any questions about the history? If

you want to know, one of my TAs compiled a pretty neat little summary.

Maybe I will see if I go back and find this. I just printed out and sent it-- how many of

you like to know a little bit more about the history? These are like two liners on each

person. Anybody want it? Is it worth my time to send this out? OK, it's kind of fun.

So let's do an example of this modeling describing the motion, picking physical laws,

applying the math. And that'll get us launched in the course. And we'll do it using

Newton and the direct method.

So last May, Haynes Miller and I talked about vibration. So I'm going to start with a
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vibration problem. And I brought one. So here's my couple of lead weights and a

couple of springs. So really I just want to talk about-- this is the problem I want to

talk about.

Now you've done this problem before. Haynes Miller and I did it last May. And

you've no doubt it in other classes. OK, it's a system which has a spring, a mass, it

exhibits something called a natural frequency. But let's see what it takes to just

initially begin to follow this modeling method to arrive at an equation of motion for

this problem.

So what do I mean by when I say, describe the motion? Really what that boils down

to if you have to assign a coordinate system so that you can actually say where the

object's moving. And I'm going to pick one here. So here's-- coordinate system

going to be really important in this course. And I'll give us an xyz Cartesian

coordinate system.

And I'm going to try to adopt the habit, for the most part, during the course that this

o marks this origin, but it also names the frame. So we're going to talk about things

in that are reference frames. And most important one that we need to know about in

the course is an inertial reference frame, and when you can use it, and when a

system is inertial and is not.

So I'm gonna say that this is inertial. It's fixed to the Earth. It's not moving. And

we're going to use this coordinate x to describe the motion of this mass. And the

motion is going to be-- this x is from the zero spring force position.

It's actually quite important that you pick-- that you have to say what's the condition

in the spring of the system when x is 0 So we're going to say it's, when there's no

force in the spring means it's not stretch, that's where 0 is. So we've established a

coordinate system.

Second, we need to apply physical laws. Now, I'm going to do this problem by f

equals ma, Newton's second law. Sum of the external forces is equal to mass times

the acceleration. So that's the law I'm going to apply.
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Sum of the external forces, it's a vector but we're just doing the x component only

so we don't have to carry along vector notation, is equal to, in this case, mass times

acceleration. So that's the law we're going to apply.

And then finally the math to solve the equation of motion that we find, that'll be the

third piece. But part of applying the physics, in order to do this now, we need what I

call an FBD. What do you suppose that is?

AUDIENCE: Free body diagrams.

PROFESSOR: Free body diagrams. You've used these many times before, so we're going to do

those. And free body diagrams--

And I'm going to teach you, at least the way I go about doing free body diagrams,

as things get more and more complicated, you're going to have to be more

sophisticated in the way that you do these things.

So I just have some simple little rules to do free body diagrams that keep you from

getting hung up on sign conventions. I think the thing people make most mistakes

about is they get confused about signs.

So I'll try to show you how I do it. So first you draw forces that you know, basically in

the direction in which they act. Seems obvious. So when you know the direction-- so

this is a really trivial problem, but the method here is very specific.

So what's an example? Well, gravity. So we'll start our free body diagram. Gravity

acts at the center of mass. It's downward. This is what I mean by the direction in

which it acts. And it has magnitude, mg. OK.

Now the other forces aren't so obvious. The force that's put on by the stiffness and

this damper in the spring, which way do you draw them? What's the sign? What's

the sign convention?

So the convention, the way I go about doing these things, is I assume positive

values for the deflections and velocities. So in this case, x and x dot. You just
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require that the deflections that you're going to work with are positive.

And then from the positive deflection, you say which way is the resulting force? So if

the deflection in this is downwards, which direction is the force that the spring

applies to the mass? Up, right?

What about if the velocity is downwards, which direction is the force is the damper

puts on the mass? Also up, right? OK. So this allows-- this gives us-- so here's f

spring and here's the f damper. And other any other forces on this mass? So spring

force, damper force, and the gravitational force.

And so third, you deduce the signs basically from the direction of the arrows. First

we need what's called your constitutive relationship. So the spring force, fs, well

you've made x positive so it keeps things nice, the spring constant's a positive

number, so fs is kx. Fd is bx dot.

And now we write the statement that the sum of forces in the x direction. We look at

up here, we say well that's going to fs plus fd minus mg. So that's-- whoops, I wrote

it the wrong way around. Minus, minus, plus. Because I'm plus downwards, right?

Well, spring minus fs is minus kx minus bx dot plus mg equals mx double dot. And I

rearranged this to put all the motion variables on one side. mx double dot plus bx

dot plus kx equals mg. So there's my equation of motion, but with a method for

doing the free body diagrams, which will work with multiple bodies.

So you have two bodies with springs in between them. This is when the confusion

really comes up. Two bodies with a spring trapped between them. What's the sign

convention? You do the same thing. Both bodies exhibit positive motions, the force

that results is proportional to the difference, and you work it out. And you'll get the

signs right.

OK, so here's our equation of motion arrived at by doing the direct method. And if

we went on to the third step, which we're not going to do today, and that is apply the

math, it might because I want you now to describe the motion for me, solve for the

motion. That means solving the differential equation. And that's what we did last
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may in Haynes Miller's class. We'll come back to this later on.

But for today's purposes, we don't need to go there. Got something else much more

important to get to about kinematics. But I want to show you one thing, and that is

just a little tiny introductory taste to this point.

So I've derived the equation of motion of this by Newton's laws. But I'm going to

ignore Newton now and saw I'm going to drive equation of motion by another way.

And it's an energy technique, and that is-- well let's talk about the total energy of the

system. It's going to be the sum of a kinetic energy and a potential energy.

And we'll find that even with Lagrange, there's a problem with forces on systems

that are what we call non-conservative, things that either take energy out of, or put

energy into the system. And the dashpot does that. Dashpot generates heat and

takes energy out of the system.

So I'm going to have to ignore it for the moment. So the sum of the kinetic and the

potential energies in this problem is a 1/2 kx squared for the potential of the spring,

plus a 1/2 mx dot squared for the kinetic energy of the mass, and minus mgx for the

potential energy that is due to the object moving in the gravitational field.

And that's the total energy of the system. Now my problem, I've allowed no forces.

There's no excitation on here. This is just free vibration only. That's all we're talking

about, make initial displacement and it vibrates. If there's no damping, what can you

say about the total energy of the system?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Say it again. I heard it over there. It's got to be constant, right? All right, well, so this

must be constant. Therefore, the time derivative of my system, it better be 0. The

energy is constant. Take it's time derivative, it's got to be 0. Apply that to the right-

hand side of this, I get kxx dot plus mx dot x double dot minus mgx dot equals zero.

And I now cancel out the common x dot terms go away. And I'm left with-- and I've

essentially solved for the equation of motion of this system without ever looking at
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conservational momentum, Newton's laws, only by energy considerations.

OK, so that's a very simple example of that you can use energy to derive equations

of motions. But you then have to go back and fix it to account for the loss term, the

damping term. And that you still have to consider it as a force, we'll find out. Even

was Lagrange you have to go back and consider the work done by external forces.

OK. So you've just kind of seen the whole course. We've described the motion,

we've applied to Newton's laws, the physics to the direct method to derive the

equations of motion, we have gone to a direct method, and have derived the

equations of motion that way.

And that's basically what you're going to do in the course. But now you're going to

do it with much more sophisticated tools. You'll have multiple degree of freedom

systems. The description describing the motion, is maybe going to be for some of

you, the most challenging part of the course. And this is a topic we call kinematics.

And that's what we'll turn to next.

So reference frames and vectors. That's the topic. This is now that we're talking

about kinematics, and this is all about describing the motion. So Descartes gave us

the Cartesian coordinate system, and we'll start there. So imagine this is a fixed

frame-- we'll talk about what makes an inertial frame the next lecture.

But here we have an inertial frame. And it's the frame we'll call O-xyz or O for short.

And in this frame, maybe this is me, and up here is a dog, and I'm going to call this

point A and this point B. And I'm going to describe the positions of these two points

by vectors.

This one will be R, and the notation that I'm going to use is point and it's

measurement with respect something. Well, it's with respect to this point O in this

inertial frame. So this is A with respect O is the way to read this.

There's another vector here. This is RB respect to A And finally, R of B with respect

to O They're all vectors on the board. I'll try to remember to underline them in the

textbooks and things. They're usually-- vectors are noted with bold letters.
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And vectors allow us to say the following. That R, the position of the dog and the

reference with respect to O, is the sum of these other two vectors. R of A with

respect to O plus R R of B with respect to A.

And mostly to do dynamics we're really interested in things like velocities and

accelerations. So to get the velocities and accelerations, we have to take a time

derivative of our RBO dt. And that's going to give us what we'll call the velocity,

obviously you write it as V. And it would be the velocity of point B with respect to O.

And no surprise, it'll be the velocity of point A plus the velocity of B with respect to A.

And finally, if we take two derivatives, dt squared, we'll get the acceleration of B with

respect to O. And that'll be the sum of A-- the acceleration of A with respect to O

plus the acceleration of B with respect to A. All, again, vectors.

Now, just to look ahead-- this seems all really trivial. You guys are going to sleep on

me, right? If these are rigid bodies, this is a rigid body that is moving and maybe

rotating. And B is on it, and A is on it, and O isn't on it. It starts getting a little tricky.

And this, the derivative of a vector that's attached to the body somehow has to

account for the fact that if I'm-- the observer's on the body, this other point's on the

body. Say it's, I'm on this asteroid, and I've got a dog out there, and the dog's run

away from me. The speed of the dog with respect to me, I can measure. But if I'm

down here looking at it, it'll look different because it's rotating. So how do you

account for all that?

So taking these derivatives of vectors in moving frames is where the devil's in the

details. And that's part of what I'm going to be teaching you. OK. I'm still learning

how to optimize my board use. I haven't got it perfect yet, but because I'm having to

move around a lot here and improvise. But we'll persevere.

You need to remember a couple things about vectors, how to add them, dot

products. If you've forgotten these things, you need to go back and review them

really quickly. There's usually a little review section the book, so you need to

practice that sort of thing.
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Couple other little facts you need to remember. So the derivative of the sum of two

vectors is just the sum of the derivatives. And quite importantly, we're going to make

use of this one a lot, is the derivative of a product of two things.

One of them be in a vector, some function maybe of time and a here is derivative of

f with respect to t times a, plus the derivative of a with respect to t times f. That we'll

make a lot use of. So just your basic calculus.

So now, I want to take up-- let's talk about the simplest form of being able to do

these derivatives and calculate these velocities, when everything's described in

terms of Cartesian coordinates. Now I'm going to give you a little look ahead

because I'm going to try to avoid confusion as much as possible here.

The hardest problem is when you have a rigid body, you got the dog on it, you've

got the observer on it, it's rotating, and translating. And to take this derivative, you

end up with a number of terms. The simplest problem is just something in a fixed

Cartesian coordinate system. So we're going to start with a simple one, and build

our way up to the complicated one, OK?

But let's now, we're going to do the really, the simplest one. We're going to do

velocity and acceleration in Cartesian coordinates. And basically I should say fixed

Cartesian coordinates, not moving.

All right, so now let's consider the dog out here, and his position in the Cartesian

coordinate system. And I could write that and you'll, without any loss of generality

here, you'll know what I mean if I say RBx component. And I'm going to stop writing

the slash O's, because this is now all in this fixed reference frame. And it's in I-hat

direction. And I've got another component, RBy in the J-hat, and an RBz in the K-

hat.

And I want to take the time derivative-- I was looking for the velocity. I want to

calculate the velocity. So the velocity here of BNO is d by dt of RBO. . And now this

is now the product of two things, so I've got to use that formula over here. Product
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one turn times the other, and so forth.

So I go to these, and I say OK, so this is R dot Bx times I plus R dot By times J plus

R dot Bz times K. And then the other-- the flip side of that is I have to take the

derivatives of I times RBx, the derivative J and so forth.

But what's the derivative of, let's say, I? Capital I is my unit vector in the fixed

reference frame, my O-xyz frame. 0 So it's a constant. It is unit length, and it points

in a direction that it's fixed. So what's its derivative? It's going to have a 0 derivative.

So the second part of this-- second bits of that is zero. So that's the velocity in

Cartesian coordinates of my dog out there running around.

And the acceleration, in a similar way, now to get the acceleration, you take another

derivative of this. And again, you'll have to take derivatives of I, J, and K, and again

they're going to be 0. So you will find that the acceleration then, is just R double dot

x term in the plus R double dot By in the J plus r double dot Bz in the K. That would

be our acceleration term, and it's easy.

Now imagine that we are doing this in polar coordinates, unit vectors in polar

coordinates. Let me check, last year the students told me that in your physics

courses, you use unit vectors R-hat, theta-hat, and K. Is that right? So I'll use those

unit vectors so they look familiar, because in polar coordinates people use lots of

different things.

But think about it, in polar coordinates, theta-- it's a fixed, maybe, coordinate

system, but now theta goes like this and R moves with theta, right? So the unit

vector is pointing here, but over time it might move down to here.

And unit vector has changed direction, and its derivative in time is no longer 0. So it

starts getting messy as soon as the unit vectors change in time. And so that's one of

our objectives here is to get to that point and describe how you handle those cases.

So a quick point about velocity. You need to really understand what we mean by

velocity. So here's our Cartesian system. Here's this point out here B. And now, this

is the dog running around, and the path of the dog might have been like this.
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And right in here he's going this direction. And in a little time, in delta t, he moves by

an amount delta RB with respect to O. And that's what this is. He's moved this little

bit in time delta t. And he happens to be going off in that direction.

So this then is R prime, I'll call it, of B with respect to O, and this is our original RB

with respect to O. So we can say that his new position, RB with respect to prime is

RBO plus delta R. And these are all vectors. And the velocity of B with respect to O

is just equal to this limit of delta RBO over delta t as t goes to 0.

So what direction is the velocity? The velocity is in the direction of the change, not

the original vector, it was in the direction of the change. And in fact, if the path of the

dog is like this, at the instant you compute the velocity, you're computing the

tangent to the path of the dog. So that's what velocity is at any instant time is a

tangent to the path. And that's a good concept to remember.

So we're still in this fixed Cartesian space, and I have of couple of points. I'll make it

really trivial here. Here's B, and here's A, and the velocity of B-- where's my

number? We'll make this 10 feet per second. And it's in the J-hat direction. And A,

this is the velocity of BNO. The velocity of ANO, we'll say is 4 feet per second, also

in the J direction.

And I want to know what's the velocity of B with respect to A. So now I'm chasing the

dog, he's running at 10, I'm running at 4. How do I perceive the speed of the dog?

Well, to do this in vectors, which is the point of the exercise here, is we have the

expressions we started with over there. And we're going to use these a lot in the

course.

So the velocity of B with respect to O is the velocity of A with respect to O plus the

velocity of B with respect to A. And if I want to know velocity of B with respect to A, I

just solve this. So velocity of B with respect to O minus the velocity of A with respect

to O, and in this case that's 10 minus 4 is 6 in the J.

Point of the exercise is to manipulate the vector expressions like this. So take

whatever known quantities you have and solve for the unknown one. In this case, I
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want to know the relative velocity between the two, and it's this.

If I'm here, and I'm watching the dog, that's how I perceive the speed of the dog

relative to me, right? 6 feet per second in the J direction. What's the speed of the

dog from the point of view of over here? The speed of the dog relative to me. So it's

again the velocity of B with respect to A, but from a different position in this fixed

reference frame.

Really important point, actually. This is a really important conceptual point.

Somebody be bold. What's the speed with respect to O? The velocity of B with

respect to A seen from O, as computed from O, measured from O. Got radar down

there, and you're tracking them.

AUDIENCE: [INAUDIBLE]

PROFESSOR: In what direction?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Yeah. It's the same. The point is it's the same. If you're in a fixed reference frame, a

vector of velocity is the same as seen from any point in the frame. Any fixed point in

the frame of velocity is always the same.

And in fact, in this case, the velocity-- this is a moving point and the velocity of him

with respect to me this is different six feet per second. And I, from here, say the

velocity of that guy with respect to this guy is still 6 feet per second.

Any place in that frame or even any point moving at constant velocity, you're going

to see the same answer. So it doesn't matter where you are to compute the velocity

of B with respect to A. That's the important point. OK.

OK, we got to pick up with, and I may not quite finish, but I am going to introduce

the next complexity. OK. So what we just arrived at a minute ago is that the velocity

as seen from O is the same as the velocity as seen from A. And A is me, and I'm

moving, and I'm chasing the dog. So I'm a moving reference frame, I'm what's
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called a translating reference frame.

So now we're going to take the next step. We had a fixed reference frame before

purely, and now I want to talk about having the idea, the concept of having a moving

reference frame within a fixed one.

So this is the reference frame O capital XYZ. And this little reference frame now is

attached to me, and it's A, and I call it x-prime y-prime. So just so you can-- it's

going to be hard to tell this X from this X if I don't do something like a prime.

So that this is the concept of a translating coordinate system attached to a body, like

a rigid body, for example. We're going to do lots of rigid body dynamics here. And

within this coordinate system, I can compute the velocity of B with respect to A, and

I'll get exactly the same answer. I'll get that 6 feet per second in the J direction.

So it's as if-- so this concept of being able to have a reference frame attached to a

body and translating with it, you can measure things within it, get the answer, and

then convert that answer to here if you're using a different coordinate. You could

use polar coordinates here and rectangular here, but they still can be related to one

another. We'll do problems like that.

OK. So now what I'm doing is I told you like in the readings, the end game is to be

able to talk about translating and rotating bodies, and do dynamics in three

dimensions with translating and rotating objects. And we're going to get there

somewhat step by step. But I want you to understand the end game so you know

where we're going. And you need to have a couple of concepts in mind.

So the first concept is that this is a rigid body now. And you can describe the motion

of rigid bodies by the summation, the combination of a translation and a rotation.

And of the rigid body, if you can describe its translation, and you can describe its

rotation, you have the complete motion.

So you got to understand what do we mean by what's really the definition of

translation. So translation-- so I've got this-- I'll call it a merry-go-round. We'll use a

merry-go-round example in a minute. And you're observers in a fixed inertial frame
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up above this merry-go-round looking down. OK. But so you can see it, I got to turn

it on its side.

So here's my merry-go-round. And if it's not rotating, but let's say it's sitting on a

train, on a flat bed and moving along. It's translating. And when you say a body

translates, any two points on the body move in parallel paths.

So two points, my thumb and my finger-- if I'm just going along with this, those two

paths are traveling parallel to one another. If I got Y pointing up, the body does this,

is it rotating and translating?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Are any two points on a moving in parallel paths? Right? OK. When it goes through

curved things, it's called curvilinear translation. But it's still just translation. OK, so I'll

stop and hold steady. The train stopped, and the thing-- let it rotate. So that's pure

rotation.

And the thing to remember about pure rotation is that anywhere on the body rotates

at the same rate. If this is going around once a second, the rotation rate is one

rotation per second, 360 degrees, 2 pi radians per second is its rotation rate. Every

point on the body experiences the same rotation rate. That's a really important one

to remember.

If I'm holding still, merry-go-round's going round and round, it has a fixed axis of

rotation, right? But do rotating bodies have to have fixed axes of rotation? So if I

throw that up in the air, not hanging onto it, it's got gravity acting on it, it's rotating.

What's a rotate about?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Center of mass, OK. Is the center of mass moving? So this is clearly-- this is an

example of rotation plus translation. It rotates about an axis but the axis can move.

That's another important concept that we have to allow in order to be able to do

these problems. But this is now general motion, it's a combination of translation and
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rotation, and we figure out each of those two pieces, then we can describe the

complete motion of the system.

All right, where we'll pick up next time is then doing that. And it would help actually, if

you go read that reading, especially up to chapter 16, we have to get into to taking

derivatives of vectors which are rotating, and come up with a general formula allows

us to do velocities and accelerations under those conditions. See you on Tuesday

next.
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