
2.003SC Engineering Dynamics 

Problem Set 1 Solutions 

 

A general approach to problem-solving:  

Most problems in dynamics can be reduced to three principal steps.  

1.  Describe the motion, 
2.  Apply the appropriate physical laws, 
3.  Apply the appropriate mathematics. 

We shall routinely apply these three steps to most of the problems in this course. Beginning with 
the first problem, this will be done in some detail to provide an example.  In later problem sets 
you will be expected to be able to do this for yourself.  

Problem 1 

This is a projectile motion problem. There is no air resistance and therefore gravity is the only 
force acting on the football.  We shall see that the solution to this problem requires finding and 
solving an equation of motion.  We begin by applying the first of the three steps.  

Describe the motion: 

In the figure given with the problem statement, shown below, the unknown location of the 
landing point of the ball is specified in terms of the unknown height, „h‟ and horizontal distance 
„h‟, measured from a point at the bottom of the stands.  „h‟ is one unknown.  
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To make this problem easy to solve it is best to use a Cartesian xyz coordinate system located at 
the launch point of the ball. The final step in describing the motion is to specify the initial 
conditions of displacement and velocity at time t = 0.  

The initial position values are: xo=0 and yo=0. 

The initial velocity is given as 80 ft./s at an angle of 60° from the horizontal. This can be broken 
into x and y vector components as follows: 

ˆˆ80cos(60 ) 40 ft/s.i
ˆˆy 80sin (60 ) 69.28 ft/s. j

ox

ox

x i

j

 

 
  

 

Choose appropriate physical laws: 

This projectile motion problem may be solved by direct application of Newton's second law. 

Ext

dP
F ma

dt
    

Application of Newton‟s 2nd law is often facilitated by a free body diagram (fbd), which is 
shown in the figure below.  From the fbd two equations of motion may be deduced, one for each 
vector component of the acceleration.  An equation of motion simply relates external forces to 
the resulting acceleration according to Newton's second law: 

ˆ1. 0 0
ˆ ˆ2.

x

y

F mxi x

F myj mgj y g

   

     




  

 

All that remains is to do the appropriate math: 

Vo 
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In both the equations of motion from above the acceleration is a constant and therefore simple to 
integrate. This leads to two algebraic equations in two unknowns: one is the unknown distance 
‟h‟ and the other is the time of flight of the ball. 

First integrating Equation 1 in the x direction leads to an expression for the velocity in the x 
direction and then integrating again leads to an equation for the distance traveled in the x 
direction.  Plug in the appropriate values of initial conditions as they come up in the integrals:  

0

0

3. ( ) 0 40ft/s

4. x(t)= 40 0 55 h feet

5. h=40t-55 feet

t

o o

t

o o

x t xdt x x

xdt x t x t

    

     





   

Integrating equation 2, provides the second equation which is needed to find the two unknowns 
‘h’ and ‘t’. 

2

0

2 2

0

6. ( ) ,  where g=32.17 ft/s

1 17. ( ) 69.28 0 h (feet)
2 2

t

o

t

o o

y t ydt gt y

y t ydt gt y t y gt t

   

         





  

Equations 5 and 7 provide two equations in two unknowns ‘h’ and ‘t’ Expressing ‘h’ in terms of 
‘t’ in equation 7 leads to a quadratic equation in ‘t’, which, when solved, provides the time at 
which the ball strikes the bleachers,  t=2.971 seconds.  When this value of time is substituted into 
equation 5 a value for ‘h’ is found to be a=63.85 feet.  The total distance travelled in the x 
direction is then provided by equation 4.  x=55+h=55+63.85=118.85 feet 
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Problem 2 

A ship travels at constant speed of VS/O=20 m/s.  The wind is blowing at a speed of VW/O=10 m/s 
as shown in the figure.  Determine the magnitude and direction of the velocity of the smoke as 
seen from an observer on the ship.  Assume the smoke has a negligible upwards velocity.  In 
other words it travels parallel to the surface of the water.  

 

The key to doing this problem is to use the standard vector velocity equation: 

/ / /

/

/

/

where

the velocity of the wind w.r.t. the inertial frame,

 the velocity of the wind w.r.t the ship,

 the velocity of the ship w.r.t. the inertial frame.

W O W S S O

W O

W S

S O

V V V

V

V

V

 







  

An important fact is that the smoke travels with the wind at the velocity of the wind.  

/

/

Therefore

 also the velocity of the smoke w.r.t. the inertial frame,

also  the velocity of the smoke w.r.t the ship.
W O

W S

V

V





 

Solving the velocity equation for the unknown VW/S, the velocity of the wind with respect to the 
ship one arrives at: 

/ / /W S W O S OV V V   This is shown in the diagram below.  
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/ / /

/

/

/

where

3 1ˆ ˆ10 10
2 2
ˆ ˆ20 2 20 2

Therefore

3 ˆ ˆ[10 20 2] [5 20 2]
2

W S W O S O

W O

S O

W S

V V V

V i j

V i j

V i j

 

 

 

   
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Problem 3.  

The problem is to find the velocity of the bar riding without slip on the top of the roller.   

Describe the motion 

Assign an inertial coordinate system, Oxyz, as shown in the figure. It is fixed to the ground.   

The velocity of the bar is the same as the velocity of the point of contact between the bar and the 
roller.  Thus the problem reduces to finding the velocity of a point on a translating and rotating 
rigid body. Such problems will come up many times during this course on dynamics and 
therefore a general means of dealing with such problems is useful.   

In general the approach is to attach a coordinate system to the body with its origin at a point 
whose velocity is known with respect to an inertial frame or is easy to obtain. In this case the 
velocity of the point of contact with the ground at B is known; it is zero, because the ground is 
not moving. This type of point is known as an instantaneous center of rotation.  In this problem 
this is the only point on the roller that has a known velocity.  

A second coordinate system Bx1y1z1 is attached to the roller at B.  This is a moving coordinate 
system which rotates with the roller.   

 

This problem is solved by using the standard form of the velocity equation for a point on a 
translating and rotating rigid body.  The standard velocity equation is given below and defined 
carefully one time in this first problem set. 

/ / / /

/

/

/ 1 1 1

, where

velocity of point C in the O frame

velocity of point B in the O frame 

velocity of point C relative to point B in the B frame

           which i

C O B O C B C B

C O xyz

B O xyz

C B x y z

V V V r

V

V

V

   







s attached to the roller 

 

 

 

B 

A 

C 

 
𝛚 R=0.3m 

x
1
 

y
1
 

z
1
 

x 

y 

z 
o 
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A comment about notation:  Take for example VC/O.  It is a vector, indicated in an ordinary 
sentence by making it in bold or by putting an arrow over the symbol. In equations vectors will 
usually be indicated with an arrow over the character.  The diagonal ‘/’ symbol means with 
respect to.  Hence C/O is intended to mean the velocity of point C with respect to the Oxyz 
inertial frame of reference.  Note:  the velocity of a point is always defined with respect to a 
frame of reference. However, it is correct to compute the relative velocity between two points 
with respect to a reference frame as shall be demonstrated in a moment.  With these definitions 
the meaning of VC/O and VB/O are clear.  This leaves two terms in the velocity equation requiring 
further explanation:  VC/B  and /C Br  .   

VC/B  is defined as the velocity of point C with respect to the Bx1y1z1 frame, which is fixed to the 
roller.  In his book “Advanced Dynamics”  Prof. James Williams uses the notation Vrel for this 
particular term, because it means the velocity of point C „relative‟ to the rigid body as you could 
observe it if you were sitting at a fixed point on the rigid body and rotating and translating with 
the rigid body.  If point C is also a fixed point on the body, then VC/B = 0.  It is possible to have a 
situation in which point C moves relative to the rigid body.  Imagine an insect clinging to the 
roller at point C.  The insect is scrambling to get out of the way to keep from getting crushed 
under the bar.  Let‟s say that it is moving in the radial direction toward the center at 0.05 m/s.  
Then / 1̂0.05 /C BV j m s  where 1̂j  is the unit vector in the y1 direction in the Bx1y1z1 frame 
which is attached to the body.  Another way of defining the meaning of VC/B  is to think of it as a 
partial derivative in which the effects of the rate of rotation of the position vector rC/B are 
excluded from the process of taking the derivative. In other words, while taking the derivative, 
the rate of the rotation of the vector rC/B is for the purposes of the partial derivative assumed to 
be zero.  Hence: 

/
/

| 0

C B
C B

r
V

t 

 
 

 
 It is also true that this term is the relative velocity between points B and the insect at 

C as seen from the Oxyz inertial frame, excluding the contribution of rotation.  The contribution of rotation 
to the relative velocity must be accounted for separately by the term /C Br , which expresses the 

relative velocity between points C and B, caused only by the rotation of the rigid body and as seen from 
the point of view of an observer in the non-rotating Oxyz inertial frame.  From the point of view of an 
observer attached to the body the relative velocity caused by rotation appears to be zero. 

It is the sum of the two terms /
/

| 0

C B
C B

r
V

t 

 
 

 
  and /C Br   that yields the total relative 

velocity between the insect at C and the point B, as seen from the inertial frame of reference.  
Putting this all together in this problem we arrive at the answer that was originally sought, the 
velocity of point C with respect to the Oxyz inertial frame.  
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/ / / /

/

/ 1 1 1

, where

 0 because it is an instantaneous center or rotation,

velocity of point C relative to point B in the B frame

           which is attached to the roller = 

C O B O C B C B

B O

C B x y z

V V V r

V

V

   





/ /

0.
radians ˆ ˆ ˆ   0 0 4 2(0.3 ) 2.4

secC O C B

m
V r k m j i

s
       

  

If we wished to compute the velocity of the insect then  VC/B=- - 0.05 m/s j1, and VC/O  = (-2.4i1 – 
0.05j1)m/s.  

This problem was entirely kinematics and vector mathematics.  No physical laws needed to be invoked.  

The use of the concept of an instantaneous center of rotation made this problem particularly simple, 
because it meant only a single term in the velocity equation had to be evaluated because the others were 
conveniently zero.   
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Problem 4 

A dog runs outwards in a straight radial line on a rotating platform.  At the instant shown the dog is at 
position ‘A’at a radius of r=5.0 feet form B.  At this time the dog has an outward radial speed of 2.0ft/s.  

The platform rotates at a rate of 
rad ˆ0.5 k
s

  . Find the speed of the dog relative to the Oxyz fixed inertial 

frame of reference.  The Bx1y1z1 frame is attached to the platform.  

 

Describe the motion:   

The fixed inertial reference frame, Oxyz  is located at the center of the platform.  It has unit vectors ˆˆ ˆ, ,i j k . 
A rotating reference frame, Bx1y1z1 is also located at the center but is fixed to the platform and rotates with 

it.  This frame has unit vectors   1 1 1̂
ˆ ˆ, ,i j k .  At the particular moment in time being considered, the dog is at 

point A and the axes of the fixed and rotating systems are coincident.  The x and x1 axes line up with one 
another, as do the y and y1 axes.  The z and z1 are coincident at all times. This means their unit vectors 
also line up and are the same at this moment in time.  

The velocity equation for use when working with rotating and translating coordinate systems is 
appropriate to use in this case.   

/ / / /

/

/ 1 1 1

, where

unknown velocity of point A(dog) in the O inertial frame.

0 velocity of translation of the moving coordinate system B ,  which is

attached to the platfo

A O B O A B A B

A O xyz

B O x y z

V V V r

V

V

   



 

/ 1 1 1 1

/ 1 1 1 1

/

rm at O, but rotates.
ˆ2 ft/s j = velocity of point A(dog) relative to the rotating B frame.

ˆr 5 ft i  = position vector of the dog at A in the  B frame.
ˆ ˆ0.5rad/s k 5 ft j

A B x y z

A B x y z

A B

V

r





   1 1

/ 1 1

ˆ2.5ft/s i
ˆ ˆ ˆ ˆ0 2 ft/s j 2.5ft/s i 2 ft/s j 2.5ft/s i

 
A OV

 

    

  

  

9



Problem 5 

 

The data for the problem are:  m1=3m, m2=m, m3=5m, m=1 kg.  

R1/0=(2i, 2j, 5k),  R2/0=(-2i, 4j, 3k), R3/0=(4i, 0j, 2k) 

 V1/0=(1i, -4j, 3k)Vo,  V2/0=(i, 0j, 0k)Vo,  V3/0=(-2i,-j, -k)  

Vo=10 m/s. 

a. Find the center of mass of the three particles: 

/
/

[3 (2 ,02 ,5 ) ( 2 ,4 ,3 ) 5 (4 ,0 ,0 )] 2.67 1.11 3.11
9

i i Oi
G O

i

i

m r m i j k m i j k m i j k
r i j k

m m

  
    



  
b. Compute the total linear momentum of the system of particles.  

/ 3 ( , 4 ,3 )10 ( ,0 ,0 )10 5 ( 2 , 1 , 1 )10
sec sec sec

[ 60 170 40 ]
sec

i i O

i

kg m kg m kg m
P mV m i j k m i j k m i j k

kg m
P i j k

  
       


   



 
c. Compute the velocity of the center of mass: 

/
/

/

( 6.67 18.89 4.44 ) /

20.52 /

i i Oi
G O

i

i

G O

mV
V i j k m s

m

V m s

    




  

d. Compute the total kinetic energy of the system: 
2

/ / 2

1 5450
2total i i O i O

i

kg m
T mV V

s


    

If one computes 2
2

1 1 9 (20.52) 1894.81
2 2total G G

kg m
M V V kg

s


    

Which is considerably less than the sum of the kinetic energies taken one particle at a 
time.  
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Problem set 1, Problem 6: 

The problem data is given as: 

m1=1000kg ,  m2=2000kg 

V1/O=25i m/s,  V2/O=-25i m/s, V‟1/O=25i m/s 

 

 

 

a.  Compute the change in the total linear momentum of the two body system and the 
change in the total kinetic energy of the system before and after the collision. 
 

i. By considering the two cars as one system, it is possible to say that the total system 
linear momentum is constant, because there are no net external forces.  This also 
means that the velocity of the center of mass before and after the collision must 
remain constant. 

 
1 2 /

ˆ ˆ ˆ1000 (25 ) 2000 (25 ) 25000( ) ( )before after G O

m m kg m
P P kg i kg i i m m V

s s s


      

Therefore the final velocity of the two cars stuck together is the velocity of the center 

of mass.  / , 1 2 / ,
ˆ ˆ25000 / ( ) 8.3333G O after G O before

kg m m
V i m m i V

s s


      There is no 

change in the system linear momentum before and after the collision. 
 

ii. The total kinetic energy is given by the sum of the energies of the two cars.  After the 
collision the two cars stick together and the kinetic energy is computed using the 
velocity of the center of mass. 

2
2 2

1 1/ 2 2/ 2

2
2

1 2 / 2

2

2

1 1= 937,500
2 2
1T ( ) 104,167
2

T 833,333

before O O

after G O

after before

kg m
T mV m V

s

kg m
m m V

s

kg m
T T

s


 


  


    

  

 
The system loses energy as heat during the collision.   
 

b. Compute the change in the linear momentum and the change in the kinetic energy during 
the collision from the point of view of an observer traveling in a reference frame attached 
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to a train travelling at constant velocity equal to that of m1.  First, describe the motion.  
Even though this is simple enough that one can reason out the correct relative velocities, 
use the vector velocity equation involving a moving but not rotating coordinate system.  
This develops good practice that will be useful in more difficult relative velocity 
problems.  
 

/ 1/

1/ / 1/

1/

2/ / 2/

2/ 2/ / 2/ 1/

ˆ25

0

ˆ50

train O O

O train O train

train

O train O train

train O train O O O

m
V V i

s

V V V

V

V V V

m
V V V V V i

s

 

 

 

 

      

  

 
With the above we have the velocities of the two cars as observed from the train.   
 
i.  As before the change in linear momentum before and after the collision as seen 

from the train must stay constant.  The train is travelling at constant speed and 
therefore is an inertial reference frame.  Since there are no net external forces 
acting on the system of two cars, the momentum must stay constant. 

/ / 1 1/ 2 2/

/ 1 2 /

/

ˆ ˆ ˆ1000 0 2000 50 100,000

( )

33.33

before train after train train train

after train G train

G train

m m kg m
P P mV m V kg i kg i i

s s s

P m m V

m
V

s


      

 

  

 The change in linear momentum is zero as before when viewed from the non-
moving inertial reference frame. 
 

ii. The kinetic energy computation before and after the collision is as follows. 
2

2 2 2
1 1/ 2 2/ 2

2
2 2

1 2 / 2

2

2

1 1 10 2000 ( 50 / ) 2,500,000
2 2 2

1 1( ) (3000 )( 33.33 ) 1,666,667
2 2

833,333

before train train

after G train

after before

kg m
T mV m V kg m s

s

m kg m
T m m V kg

s s

kg m
T T T

s


     


    


    

     

This is exactly the same energy loss as computed from the non-moving inertial 
frame.   
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The generalization that can be made is that the principles of conservation of 
energy and conservation of momentum hold for any inertial frame of reference, 
even two frames travelling at different constant velocities.  Changes in linear 
momentum or kinetic energy will be the same regardless of differences in 
velocity, as long as both frames are inertial reference frames.  

 

  

13



Problem Set 1, problem 8. 

The problem statement asks us to obtain an equation of motion for the mass spring damper 
system shown below. 

 

Begin by describing the motion: 

The mass is constrained to move up and down the slope. It has one degree of freedom and 
therefore only one coordinate is needed to completely describe the motion. The coordinate x(t) 
has been selected as shown in the figure. It is measured from the unstretched spring position, so 
that at x=0.0 the force in the spring is zero. It is very important that you make clear where 
your coordinate system is located. 

Select the physical laws that are to be applied: 

In this case, Newton's second law will be applied to the mass. This requires identifying all of the 
external forces acting on the body. This is aided by drawing a free body diagram, as shown 
below.  Since this is the first problem set in the course some problem solving procedures are 
described in depth in this solution so as to set an example for problem sets to follow.  One such 
topic is the drawing free body diagrams.   

Drawing free body diagrams: The intention is to draw known forces in the direction in which 
they act.  Determining the correct signs on some forces is sometimes confusing. In this case 
identifying the correct sign for springs, dampers and friction is a challenge.  It is recommended 
that for such forces one always assume that the displacements and velocities of the mass are 
positive. In this case that would mean assuming that the mass moves in the positive x direction 
with positive velocity.  A positive displacement from x=0 stretches the spring, resulting in a 
restoring force in the negative x direction. On the free body diagram indicate the spring force as 
kx with an arrow pointing in the negative x direction.  The sign is accounted for by the direction 
of the arrow. 

X(t) 

Y(t) 
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To deduce the direction of the damper force assume a positive velocity. The damper resists the 
motion by applying a force on the mass in the negative x direction.  We draw it as an arrow 
pointing in the negative x direction.  

In order to correctly indicate the direction of the friction force, it is important to note that the 
velocity is in the positive x direction. The friction force opposes the velocity and therefore must 
be in the negative x direction. Therefore, we draw an arrow pointing in the negative x direction 
to indicate the friction force with value ‘f’. 

Next we assemble the equations of motion: In the plane of the diagram there are possible 
motions in the x and y directions.  It is possible to write two equations of motion, one for each 
vector component in the x and y directions.  From Newton‟s second law summing the forces in 
the y direction is equal to the mass times acceleration in the y direction, which must be 0.0, 
because the motion is constrained by the slope. This allows us to solve for the normal force, N.  
The expression for N will be useful in specifying the friction force, f.   

ˆ ˆ ˆcos( ) , cos( )N mg j f Ni mg i          

 

Next sum forces in the x direction and equate them to the mass times acceleration in the x 
direction. This leads to the following equation of motion. Note that the spring, damper and 
friction forces are all preceded by minus signs, because they are drawn on the fbd in the negative 
x direction, given the assumption that the displacement and velocity were assumed to be positive.  

ˆ ˆ[ cos( ) sin( )] , which can be rearranged as:

cos( ) sin( ),  the equation of motion.

x

i

x
F kx mg bx mg i mxi

x

x
mx bx mg kx mg

x

  

  

     

   


  

The undamped natural frequency is obtained by the solution to the free vibration of this system 

with no damping and no friction.  It is simply n

k

m
  .  It is not a function of the slope. The 

constant force term on the right hand side of the equation tells you that the static equilibrium 
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position is not at x=0 but at a location down the slope where the x component of the weight of 
the mass is balanced by the spring force. This static equilibrium position is a function of the 
slope.  
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