
2.003 Engineering Dynamics 

Problem Set 9--Solution 

Problem 1 

Find the equation of motion for the system shown with respect to: 

a) Zero spring force position. Draw the appropriate free body diagram. 

b) Static equilibrium position. Draw the appropriate free body diagram. 

Solution:  Let x and xd be the displacements of the mass, measured from the zero spring force 
and the static equilibrium positions, respectively.  Let xs be the static displacement under the 

influence of gravity.  These metrics are related as 
follows: 

s d

d

d

x x x
x x
x x

 



     (1) 

The free body diagrams are shown below.  The 
coordinate x is measured from the zero spring force 
position. When hanging in the static equilibrium 
position sx x and .d d dx x x o     The static spring 
force must be equal and opposite to the weight.  
Therefore, ˆ ˆ ,  and mg=kx .s smgi kx i o    (2) 
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For the case with additional dynamic motion, from the free body diagram sum the external forces 
and equate to the mass times the acceleration: 

,  which upon rearrangement becomes
,  which is the EOM based on the displacement measured

from the zero spring force position. 

mx kx bx mg
mx bx kx mg

   
     (3) 

If x and its derivatives in (3) are replaced by the equivalent expressions from (1) in terms of the 
static and dynamic components of the motion the following EOM is obtained.  

( ) ,  which upon rearrangement becomes
0 from (2)

0,  the EOM expressed with respect to the static equilibrium position.

d d s d

d d d s

d d d

mx bx k x x mg
mx bx kx mg kx
mx bx kx

   
    
  

 

The key point to understand is that the spring force due to the static deflection exactly cancels 
the weight of the mass, regardless of the amount of the dynamic motion, which is in addition to 
the static deflection.  In this case the term involving gravity is a constant, mg.  It does not vary 
with dynamic motion.  Whenever this happens in a dynamics problem, by writing the EOM with 
respect to the static equilibrium position, the term involving gravity can be eliminated from the 
EOM.  This is the answer to problem 3 as well.  

Problem 2 

A thin hoop of mass m and radius R is hanging from a knife edge (there is no slip between the 
hoop and the knife edge). The excitation force, F(t), is always horizontal. 

a) Draw a free body diagram and derive the equation of motion of the hoop. 

 

2



b) Find the linearized equation of motion using a small angle approximation for θ (define θ 
such that the static equilibrium position is θ=0). 

c) Find the undamped natural frequency of the system. 

Solution:  This is a planar motion problem. See the free body diagram above.  Summing 
the torques with respect to the fixed point ‘O’ allows us to write Euler’s law in the 
simplified form: 

/

2
/ / /

2
/

2 2 2
/

ˆ ˆˆˆ sin sin

sin 0,  where ,  using the parallel axis theorem.

For a thin hoop, and therefore

2 ,  which upon substi
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I mgR I I mR
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 
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2

tution yields

2 sin 0.mR mgR  

 

The small angle approximation sin , allows the equation of motion to be linearized:    

0.
2
mg

m
R

    Assuming a solution of the form 

( ) cos( ) results in an expression for the natural frequency:
/ 2 .n

t A t

g R

 






  

 

Problem 3 

Come up with a general rule that will predict when the acceleration of gravity will appear in the 
expression for the natural frequency.  Compare the systems of problems 1 and 2 to illustrate your 
answer. 

Solution:  In problem 1 the term in the EOM involving gravity was mg.  In equation 2 the term 
in the EOM involving g was sin .mgR   In problem 2, the term involving gravity also involved 
the motion coordinate, .  Whenever the gravity term in the equation of motion is not a function 
of the motion coordinate, then by using a coordinate which is measured from the static 
equilibrium position will eliminate the gravity term from the EOM.  In such cases the natural 
frequency is not a function of gravity.  When the gravity term involves the motion coordinate, 
then the natural frequency will also involve gravity, as occurs in problem 2.  

Problem 4 

For the system in problem 1, let K=10,000 N/m, M=0.633 kg, xo=0.1m, vo=10 m/s and the 
damping ratio  =0.05.   

a. Find an expression for x(t) in terms of the initial conditions.  Express x(t) in the form 
x( t ) Acos( t )   . 
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b. Sketch x(t) versus time. 
c. Compute the ratio of the damped to the undamped natural frequency for damping ratios 

of (i) 5%, (ii) 10% and (iii) 20% of the critical damping.  
 

Solution:  The general expression for the response of a single DOF system to initial conditions 
is: 

a. 
1/22

2 1 2

( ) cos( ) sin( ) cos( )

where

A= ,  =tan  and 1

t o n on
d o d d

d

o n o o n o
o d n

d o d

x x
x t Ae t x t t

x x x x
x

x

 
   



 
   

 





 
    

 

     
      
     

  

For this problem, 0.1 ,  v 10 / ,  and = 0.05.o o ox m x m s      

210,000 / 125.7 / ,  1 0.05 0.999 125.6 /
0.633

6.28 /
n d n n

n

k N m
rad s r s

m kg
r s

   



      



  

 

 

1/22
2

2

1

10 6.28 0.1
0.1 0.131

125.6
10 .628

tan 0.7
0.1 125.6

A m

radians

 
   
  

 
  

 


  

b. 

 
 

c. 21   0.999  , 0.995, and 0.98 for =0.05, 0.1 and 0.2 respectively.d

n


 


     
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Problem 5 

For the values of M, K used in the previous problem, compute the steady state amplitude and 
phase angle of the response to a harmonic force specified as oF( t ) F cos( t ) , where Fo=10N 
and the damping ratio is 5% of critical.  Do this computation for three values of ω/ ωn = (i) 0.5, 
(ii) 1.0 and (iii) 3.0. 

Solution:  To compute the steady state response of a single DOF system apply the transfer 
function between the input force and the response displacement.  

/ 1/22 22

/ 1/22 22

2

1 1( )  

1 2

or in terms of the dynamic amplification
1( ) ,  

1 2

10where x 0.001
10,000 /

When evaluated at 
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 
    
          

 
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

 


 



 



/

/

1
2

2

0.5,1.0 and 3.0

( ) 1.33,  10,  0.124,

x=x ( ) 0.00133,  0.01,  0.000124

For the 3 cases in order  is given by 
2

=tan 0.067,  ,  and 3.1 radians.
2

1

 and  are shown in the figures

n
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 to the right. 

The response x(t) may be written as 

x(t)= ( ) cos( )

x(t) ( ) cos( )

o x F

o
x xs

F H t

F
H t

k



 

  

  
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Problem 6 

A block of wood is suspended by two strings, as shown in the figure below. The strings are 
separated by d=10.0 cm. and are 28 cm in length. a= 14.0 cm, b=6.0 cm, and c=1.8 cm. 

a) Determine the mass moment of inertia with 
respect to the vertical axis of rotation which 
passes through the center of mass of the 
block. 

b) Find an equation of motion for small 
torsional oscillations about the vertical axis 
which passes through the center of mass.  
Use the direct method in which you sum the 
external moments to find the equation of 
motion. Linearize the equation of motion 
for small oscillations. 

c) Find expressions for T and V, the kinetic 
and potential energies of the block in terms 
of the rotational velocity and the angle of 
rotation of the block. 
 

Solution:  

a.  A vertical axis passing through the center of mass is a principle axis of the object.  For a 
rectangular uniform solid the mass moment of inertia with respect to a z axis passing 
vertically through G is given by: 

2 2

/ .
12 12zz G

a c
I m

 
  

 
  

b. To find the equation of motion for rotation about the z axis, we apply Euler’s equation 
with respect to the center of mass. The geometry is critical to this problem.  Consult the 
figure to see the relation 
between the angle the 
string makes to the block 
and the angle of rotation.  
If the block rotates 
through a small angle   
about the z axis, the string 
will make an angle   
with the vertical, such 

that ,
2
d

L  as shown 

in the figures at right.  
 

c. There is a tension in each 
string approximately 
equal to half the weight of 
the block mg/2.  The 
component of tension 
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perpendicular to the radius from G to the connection point creates a moment about the z 
axis.   
 

 /

2 2
/

2
/

2 2
2
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d.  The potential energy in this problem is due to changes in gravity potential energy.  As the 

block rotates through the angle   about the z axis, the center of mass of the system  
moves in the positive z direction by the amount: 

(1 cos ) (1 cos( ))
2
d

z L L
L

      where z is measured from the center of mass in its static 

equilibrium position at 0.    

(1 cos( )).
2
d

V mgL
L
   The kinetic energy has two contributions.  The first is the rotational KE 

about the center of mass.  The second is the translational kinetic energy of the object.  The only 
non-zero translational velocity of the center of mass is in the vertical direction.   

2 2
/

2
2 2 2

1 1  where
2 2

ˆ(1 cos( ))
2 ˆz= sin( )

2 2
Therefore

1 1T= ( ) sin( )
2 12 2 2 2

zz GT I mz

d
d L k

d dL
k

dt L

m d d
a c m

L





 

  

 

 
 

  

   
    

   

 

 
The second kinetic energy term is a 4th order quantity involving the coordinate .  For small 
angles of oscillation, this term is negligible compared to the rotational kinetic energy term and 
may be neglected.  Since there is no damping considered in this problem the total energy of the 
system must be conserved, and its time derivative must be zero.  The total energy of this single 
degree of freedom system is given by: 
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After linearization of the sine term the EOM is given by
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 

  

 
This is the same result as before.  

Problem 7 

Consider the same system as in problem 6.  

a) Find the kinetic and potential energy 
expressions for the block when it swings 
in the plane of the paper as drawn in the 
figure.  This means there is no torsional 
motion about the vertical axis passing 
through the center of mass.  This is a 
one degree of freedom system.  

b) Use the concept of conservation of total 
energy to find the equation of motion. 
Linearize the EOM and find the natural 
frequency.   

c) Assume that we conduct an experiment 
with this system.  The pendulum is 
given an initial angular deflection of 0.2 
radians and released.  Over time the oscillation amplitude becomes smaller due to 
damping.  After 5 cycles of vibration the maximum angle of motion has reduced to 0.08 
radians.  What is the approximate damping ratio of the system.    

Solution:  

a. When the block swings as drawn in the plane of the paper, it does not rotate.  It only 
translates in the plane of the paper.  See the diagram to the right.  The total kinetic energy 
of the system may be accounted for by considering the velocity of the center of mass.  
The velocity of the center of mass is the same as the velocity at any other point on the 
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block, including the point of attachment of either string.  With this understanding it is 
more obvious to see that:  

/

2

/ /

ˆ ˆˆ
1 1
2 2

(1 cos )

G O

G O G O

v r k Lr L

T mv v m L

V mgL

  





    

    

 

  

The reference point for the potential 
energy was taken from the static 
equilibrium position of the center of 
mass of the block.  Note that the 
attachment point of either string to the 
block moves upwards the same amount 
as any other point on the block, including the center of mass.  

b. As in the previous problem there is no damping.  Therefore the total energy of the system 
is conserved and the time derivative of the total energy of the system must be equal to 
zero.  This will lead directly to the undamped equation of motion of the system: 

 
21 (1 cos )

2 0

sin 0,  which when linearized for small angles yields

0

d m L mgL
d T V

dt dt

mL mgL

mL mgL

 

 

 

 
       

 

  

 

 

From the EOM it is now easy to see that the natural frequency is the same as that as a 
simple point mass pendulum of length L 

n

g

L
   . 

c. The damping ratio for a single DOF system may be determined from the logarithmic 
decrement: 

1 1 0.2ln( ) ln( ) 0.029
2 10 0.08

o

n

A

n A


 
     
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