
2.003 Engineering Dynamics 

Problem Set 7--Solution 

 

Problem 1:   

A cart of mass’M’ is connected to a dashpot with constant ‘c’.  A force F(t) acts on the mass, 
where the force is given by ( ) cos( )oF t F t . 

a). Use Lagrange’s equations to derive the equation(s) of 
motion for the system.  

Concept question:  A long time after applying F(t) the 
mass will exhibit what kind of motion?  a). oscillate and 
move steadily to the right, b).  oscillate and move 
steadily to the left, c).  oscillate about a mean position, 
d).  not move.  

Solution:  Specify coordinates:   This is a one degree of freedom system.  The coordinate x, is a 
complete, independent and holonomic set of generalized coordinates for the problem.   

Find T and V:   The potential energy V=0 and does not change. 

The kinetic energy T comes purely from translation:  21
2

T mx . 

Find the generalized forces:  Generalized forces arise from the applied external force F(t) and the 
damper force Fd.  In general one can define a position vector ri which accounts for the motion of 
the rigid body at each point of application of an external non-conservative force.  In general ri is 
a function of all of the independent generalized coordinates used in the problem. One at a time 
we need to compute the virtual work done by a small virtual displacement of each generalized 
coordinate.  This may be done intuitively for simple problems, such as this one.  Since there is 
only one generalized coordinate x and both the damper force and F(t) are in the same direction as 
x then the virtual work done in a small variation x  would be given by 

 cos( )x oQ x F t bx x      and therefore the generalized force in this problem is simpley 

 cos( )x oQ F t bx  .   

More complicated problems require the use of a vector mathematics approach.  This approach is 
applied to this simple problem as a model for more difficult problems later.   
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The explicit, exact, vector math approach:
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Apply Lagrange’s equations: 

a) Find the equations of motion using Lagrange equations, which may be stated as:   

j
j j

d L L Q
dt q q
  

       where L=T-V.  For purely mechanical systems that have only springs and 
gravity as potential forces, the Lagrange equations may be expressed in a much simpler form, 
which saves many steps in carrying out the math.  It is valid any time that potential energy is 
only from gravity and springs.  

( ) ( ) ( )
j

j j j

d T T V Q
dt q q q
   

        , where the qj are the generalized coordinates.  This equation must 
be applied once for each generalized coordinate in the problem.  In this problem, there is only 
one generalized coordinate, x.  T and V are functions of  and x.x  Numbering the terms on the 
LHS as 1, 2 and 3 in order of appearance, the three terms may be evaluated in a systematic way.   

Term 1:    2( ) 1
2

d T d dmx mx mx
dt x dt x dt

    
     

    
 

Term 2: 
( ) 0T
x




  

Term 3:  ( ) 0V
x





 

Summing terms 1, 2 and 3 from the LHS and equating it to the generalized force Qx found above 

yields: 
cos( )

cos( )
x o

o

mx Q F t bx
mx bx F t





  

  
 .   This is a second order linear differential equation which 

may be solved.  After initial transients have died out the steady state particular solution will be in 
the form of ( ) cos( )ox t x t   .  This is harmonic motion about some mean position which will 
depend on initial conditions, which is the answer to the concept question. 
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Problem 2:   

Two identical masses are attached to the end of massless rigid arms as shown in the figure. The 
vertical portion of the rod is held in place by bearings that prevent vertical motion, but allow the 
shaft to rotate without friction.  A torsional spring with spring constant Kt resists rotation of the 

vertical shaft.  The shaft rotates with a time varying 
angular velocity   with respect to the Oxyz inertial 
frame. The arms are of length L. The frame Ax1y1z1  
rotates with the arms and attached masses. A time 
varying torque is applied to the rotor about the z axis, 
such that /

ˆ( )A o t k  .  Note that the angle    is 
fixed. 

a). Derive the equations of motion using Lagrange 
equations. 

Concept question:  What are the units of the 
generalized force in this problem.   a). N, b). N/m, c). 
N-m, d. other. 

Solution:  Specify coordinates:   There is one degree of freedom.  The coordinate ( )t , which is 
rotation about the z axis, makes a complete, independent and holonomic set of generalized 

coordinates for the system.  By this choice of coordinate, recognize that  ˆ( )t k  . 

Find T and V:   These were found in Pset 6.  They are: 

 

2
1

2 2 2
/ 1 / 1

2 2
1

ˆsin cos
1 1 1 1ˆ ˆ0 0 0 0 0 (1 cos )
2 2 2 2

ˆ(1 co

 

s

 

)
A A

mL i
T H k H k mL

mL k

 

 



  
 

              
 

  

The potential energy comes from the torsional spring.  The zero spring torque position of the 
rotor is selected as the reference position for V=0.  At static equilibrium, the coordinate 0  .  
With respect to that position V is expressed as: 

21
2 tV K 

 

Apply Lagrange’s equations, which for purely mechanical systems may be stated as:
 

( ) ( ) ( )
j

j j j

d T T V Q
dt q q q
   

        .
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where the qj are the generalized coordinates.  This equation must be applied once for each 
generalized coordinate in the problem.  In this problem, there is only one generalized coordinate, 
 .  T and V are functions of  and .   Numbering the terms on the LHS as 1, 2 and 3 in order of 
appearance, the three terms may be evaluated in a systematic way.   

Term 1:   2 2 2 2 2 2 2( ) 1 (1 cos ) (1 cos ) (1 cos )
2

d T d dmL mL mL
dt dt dt

     
 

    
               

 

Term 2: ( ) 0T






 

Term 3:  2( ) 1
2 t t

V K K 
 

   
     

 

Summing terms 1, 2 and 3 from the LHS and equating it to the generalized force Q  yields the 
equation of motion: 

2 2(1 cos ) tmL K Q      

In this case the amount of virtual work done in a virtual displacement   is given by 
( )
( )

o

o

Q t
Q t





  





 
 

2 2(1 cos ) ( ).t omL K Q t        

Problem 3:   

A pendulum of mass ‘m’ is allowed to rotate about the z axis passing through point O in the 
figure.   The center of mass is at a distance ‘l’ from O and Izz/G is 
known.  An external time varying torque, ( )t   is applied to the 
pendulum at O.  

a).  Derive the equation(s) of motion using Lagrange equations.  

Concept question: Is it appropriate to use the principal axis 
theorem in this problem?  a). yes, b) no.  

Solution:   

Choose appropriate coordinates:   The rotation ˆ( )t k about the point 
O is a complete, independent, holonomic set of coordinates for this 
problem.   
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Find T and V: 

Izz/G is given.  We require that a set of principal axes be attached to the rigid body at G. Let the 
frame attached to the body be called Gx1y1z1.   Since this is obviously a body with an axis of 
symmetry in the x1 direction as drawn in the picture, then both the y1 and z1 axes, which are 
attached to the body and are perpendicular to the x1 axis are also principal axes. The z1 axis is 
coming out of the page at G is parallel to the z axis in the Oxyz inertial system fixed at point O.  T 
may be computed using the general formula for the kinetic energy of a rotating and translating 
rigid body.  We may apply the simplifications that are appropriate for planar motion in which the  
rotation is about a fixed point, which is not the center of mass, as was given by Equation 3 in the 
appendix to Pset 6.  This equation applies to single axis rotation about a fixed axis which is a 
principal axis.   

2
/ / /

/ 1

/ /

2 2 2 2 2
/ /

1 1
2 2

ˆIn this problem 

1 1 1
2 2 2

G O G O ii G i

G O
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i z

zz G zz G

T mv v I

v l j
I I

T ml I ml I

 







      





 

  

 

The last expression can be recognized as the equivalent to using the parallel axis theorem, where 
the distance the parallel axis is from G is l.  

The only source of potential energy in this problem is gravity: 

0

ˆ ˆˆ ˆ( sin ) sin (1 cos )V d k l j mgi d k mgl d mgl        


         

Find the generalized forces:  For this problem there is only one generalized force, Q .  The 
virtual work done in a virtual rotation   can be figured out by inspection.  The only external 

non-conservative force(or moment) doing work is ( )t .  Therefore   
( )
( )

W t Q
Q t





   



  

 
 .  

Note that when the external action is a torque, ( )t , the virtual movement must be a rotation .  

Apply Lagrange’s equations, which for purely mechanical systems may be stated as:
 

( ) ( ) ( )
j

j j j

d T T V Q
dt q q q
   

        .
 

where the qj are the generalized coordinates.  This equation must be applied once for each 
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generalized coordinate in the problem.  In this problem, there is only one generalized coordinate, 
 .  T and V are functions of  and .   Numbering the terms on the LHS as 1, 2 and 3 in order of 
appearance, the three terms may be evaluated in a systematic way.   

Term 1:   2 2 2 2
/ / /

( ) 1
2 zz G zz G zz G

d T d dml I ml I ml I
dt dt dt

  
 

  
                   

 

Term 2: ( ) 0T






 

Term 3:  ( ) (1 cos ) sinV mgl mgl 
 

 
  

 
 

Summing terms 1, 2 and 3 from the LHS and equating it to the generalized force Q  yields the 
equation of motion: 

2
/ sin ( )zz Gml I mgl Q t         

Problem 4:    

Two uniform cylinders of mass m1 and m2 and radius R1 and R2 are welded together. This 
composite object rotates without friction about a fixed point. An inextensible massless string is 

wrapped without slipping around the larger cylinder. 
The two ends of the string are connected to a spring of 
constant k on one end  and a dashpot of constant b at 
the other.  The smaller cylinder is connected to a block 
of mass mo via an inextensible massless strap, which is 
wrapped without slipping around the smaller cylinder. 
The block is constrained to move only vertically.  

a) Find the equations of motion using the Lagrange 
approach.    

Concept question:  For small values of the dashpot 
constant, b, if this single degree of freedom system is 
given an initial displacement from its static 

equilibrium position, will it exhibit oscillatory motion after release?  a)Yes, b)No. 

Solution:  Specify coordinates:   There is one degree of freedom.  The coordinate ( )d t , which is 
rotation about the z axis, makes a complete, independent and holonomic set of generalized 
coordinates for the system.   

Find T and V:   These were found in Pset 6.  They are: 
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2 2
2 2 2 21 2

/ 1 1 2
1 1 1
2 2 2 2 2m rotor o zz G d o do

R RT T T m y I m R m m 
 

       
   

2 2
2

1V= , where  is measured from the static equilibrium position.  
2 d dKR   See the figure below 

from the solution to Pset6. 
 

Find the generalized forces:  For this problem there is only one generalized force, Q .  The 
virtual work done in a virtual rotation 

d  can be figured out by inspection.  
The only external non-conservative 
moment doing work during a rotation 
is due to the dashpot.  A positive 
rotational velocity results in a torque 
given by 2

2
ˆ

dashpot dbR k   .  The 

work done in a positive rotation   is 
given by  

 

 

2 2
2 2

ˆ ˆ ˆ
ddashpot d d d d d dW k bR k k bR Q             .  Therefore the generalized force 

2
2 dQ bR   . 

Apply Lagrange’s equations, which for purely mechanical systems may be stated as:
 

( ) ( ) ( )
j

j j j

d T T V Q
dt q q q
   

        .
 

where the qj are the generalized coordinates.  This equation must be applied once for each 
generalized coordinate in the problem.  In this problem, there is only one generalized coordinate, 
 .  T and V are functions of  and .d d   Numbering the terms on the LHS as 1, 2 and 3 in order 
of appearance, the three terms may be evaluated in a systematic way.   

Term 1:   

2 2 2 2
2 2 21 2 1 2

1 1 2 1 1 2

2 2
2 1 2

1 1 2

( ) 1
2 2 2 2 2

2 2

o d o d
dd

o d

R R R Rd T d dm R m m m R m m
dt dt dt

R Rm R m m

 
 



      
          

      

 
   
 
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Term 2: ( ) 0
d

T






 

Term 3:  2 2 2
2 2

( ) 1
2 d d

d d

V KR KR 
 

 
 

 
 

Summing terms 1, 2 and 3 from the LHS and equating it to the generalized force Q  yields the 
equation of motion: 

2 2
2 2 21 2

1 1 2 2 2

2 2
2 2 21 2

1 1 2 2 2

2 2

0
2 2

do d d d

o d d d

R Rm R m m KR Q bR

R Rm R m m bR KR

  

  

 
      

 

 
      

 

 

This is the equation of motion of a damped single degree of freedom oscillator.  It has no 
external excitation.  If given an initial rotation and released it will exhibit decaying oscillations 
about the static equilibrium position, which answers the concept question.  

 

Problem 5:    

A wheel is released at the top of a hill.  It has a mass of 150 kg, a radius of 1.25 m, and a radius 
of gyration of kG =0.6 m.    

a). Assume that the wheel does not 
slip as it rolls down the hill.  Derive 
the equation of motion using 
Lagrange equations.   

b).  Assume the wheel does slip, and 
that the friction force between the 
wheel and the ground is ˆ3f Ni  .  
Derive the equations of motion using 
Lagrange equations.   

Concept question:   For which case, 
a) or b) will friction appear in the equations of motion as a non-conservative generalized force?  
A. in a) only,  B.  in b). only, C.  in a) and b), D. Never. 

Solution:  a). Choose the generalized coordinates:  With no slip, this is a single degree of 
freedom system.  We can use either the rotation of the wheel or the translation because they are 
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related by  and x=Rx R    

Compute T and V: 

2 2 2 2 2
/

1 1 1 ( )
2 2 2zz G z GT m x I m R     

 We shall use the rotation of the wheel,  , as the single, independent, holonomic coordinate. As 
the wheel rolls down the hill it decreases in potential energy.  Let x=0 be measured from the start 
at the top of the hill.  The vertical distance it drops in a distance x is given by:  sinh x  . 

sin sinV mgx mgR        

Find the generalized forces:   There are no non-conservatives forces which do work in this 
problem.  0.Q    

Apply Lagrange’s Equations to obtain the equations of motion: 

( ) ( ) ( )
j

j j j

d T T V Q
dt q q q
   

        .         (1)
 

Numbering the terms on the LHS as 1, 2 and 3 in order of appearance, the three terms may be 
evaluated in a systematic way.   

Term 1:   2 2 2 2 2 2 2( ) 1 ( ) ( ) ( )
2 G G G

d T d dm R m R m R
dt dt dt

     
 

  
      

     (2)
 

Term 2: ( ) 0T





           (3)
 

Term 3:  ( ) sin sinV mgR mgR  
 

 
   

 
 

Summing terms 1, 2 and 3 from the LHS and equating it to the generalized force Q  yields the 
equation of motion: 

2 2

2 2

( ) sin 0

( ) sin
G

G

m R mgR

m R mgR

  

  

  

    

This is simply a constant acceleration solution. 
 

b)  Part b says to do it again but this time allowing slip.   
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Choose coordinates:  With slip, two independent coordinates are required because x and   are 
not bound by the constraint x R .  We choose x and  . 
 
Evaluate T and V: 
 
From part a) there was a suitable expression for T before the no slip constraint was applied in a).  

2 2 2 2 2
/

1 1 1 1
2 2 2 2zz G z GT m x I m x m       

sinV mgx   where x=0 is taken from the point of release at the top of the hill. 
Find the generalized forces:  In this 
problem the only non-conservative 
force is that caused by friction.  In 
part a) the friction force existed but 
did not do work on the system and 
therefore did not appear in the final 
equation of motion.  In this part the 
friction force does work because of 
the sliding contact with the ground.   
 
There are two ways to find the 

generalized forces, the mathematical way and the intuitive way.  Both shall be shown here as a 
learning exercise.   
 
Intuitive approach:  In this method we attempt by inspection to determine the small variation, 

jW , of the virtual work done by all of the non-conservative forces, Fi, during a virtual 

displacement of the generalized force j .  
 

1 1

   
 

 
       

 F F
N N

nc i
j j j i j i ij

i ij

r
W Q q q r

q
      (4) 


ij

r  is the virtual displacement at the position of the ith non-conservative force, Fi, due to the 

virtual displacement in the jth generalized coordinate j .  Sometimes this can be done by 
inspection.  In this problem there is only one external force, the friction force, such that 

1
ˆ

iF F fi   .   During a small virtual displacement x , the virtual work done by this force is 

given by 1 1
ˆ ˆ

x x x x x xW F r fi i f Q          .  It was easy in this case because it was easy to 

figure out that 1
ˆ 

x x
r i . We can conclude that xQ f  .   Turning to the second generalized 

coordinate  , it is slightly more difficult to determine the generalized force Q , associated with 
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a small virtual rotation  .  We need to determine  1 1W F r   .  The key is to figure out how 

1r  depends on  .  In this case we can deduce pretty quickly that a positive variation 

produces a deflection at the point of application of the friction force, given by 1
ˆr R i   .  

Therefore 1 1
ˆ ˆW Q F r fi R i Rf            . From which we conclude that 

 and therefore, Q .Q Rf Rf       Note that since   is a rotation measured in radians, then 

Q must be a torque.   

 
Mathematical approach to finding generalized forces: 
 
The principal equation we need is  (4) from the discussion above:

1 1

   
 

 
       

 F F
N N

nc i
j j j i j i ij

i ij

r
W Q q q r

q
.      (4) 

The key step is to express the position vector ri at each location of the applied non-conservative 
forces, Fi, in terms of the generalized coordinates so that the partial derivatives called for in the 

equation above i

j

r
q



 may be computed.   

This is done here for this problem.  Consider the point ‘A’ in the figure above of the wheel at 
some arbitrary position on the hill. The position of ‘A’ is determined by coordinates x and   as 
follows: 
 

/ / /
ˆ ˆA O C O A Cr r r xi Rr     .  The problem with this expression is that not all of the generalized 

coordinates appear in the expression.    can be brought in by expressing the unit vector, r̂ , in 
terms of unit vectors in the Oxyz inertial system.   

ˆ ˆˆ cos sinr i j    .  This allows the position vector for point ‘A’ to be expressed in terms of the 
generalized coordinates,  x and  .   

/ / /
ˆ ˆ ˆ(cos sin )A O C O A Cr r r xi R i j      .  Now it becomes straightforward to evaluate the partial 

derivatives needed in equation (4) above.   
/

/

ˆ ˆ ˆ ˆ(cos sin )

ˆ ˆ ˆ ˆ ˆ(cos sin ) ( sin cos )

i A O

j

A O

r r xi R i j i
q x x
r xi R i j R i j

      

       

  
 

  

 
   

 

 

Now it is a straightforward step to evaluate the generalized forces from the expression: 
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1

F
N

i
j i

i j

r
Q

q

 
    


          (5) 

1
1

1
1 /2

ˆ ˆ  and 

ˆ ˆ ˆQ ( cos sin ) sin |

x
x

rQ F fi i f
q

rF fi R j i Rf Rf
q  



   

 
     

 

 
         

  

Note that it is only at the last step that the specific value of / 2   is used to specify the 
location of the point of application of the external friction force.  One must compute the partial 
derivatives before substituting in specific values of the generalized coordinates, which 
correspond to the specific locations of the applied external non-conservative forces. 
 
Find the equations of motion using Lagrange’s equations:  This must be done twice in this 
problem, once for each generalized coordinate. Here we do the equation for the coordinate x 
first.  
Generalized coordinate x: 

( ) ( ) ( )
j

j j j

d T T V Q
dt q q q
   

        .
 

Numbering and evaluating the terms on the LHS as 1, 2 and 3 in order of appearance, leads to:.   

Term 1:   2 2 2 2 2( ) 1 1
2 2 G G G

d T d dm x m m m
dt dt dt

     
 

    
                 

 

Term 2: ( ) 0T






 

Term 3:  ( ) sin 0V mgx 
 

 
  

 
 

Summing terms 1, 2 and 3 from the LHS and equating it to the generalized force Q  yields the 
equation of motion: 

2 1.25 (3 ) 3.75Gm Rf m N N m       

Generalized coordinate :   

Term 1:    2( ) 1
2

d T d dm x mx mx
dt x dt x dt

    
         
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Term 2: ( ) 0T
x





 

Term 3:   
( ) sin sinV mgx mg
x x

 
   

 
   

Summing terms 1, 2 and 3 from the LHS and equating it to the generalized force xQ  yields the 
equation of motion: 

sin , which in more standard form is 
sin sin 3

mx mg f
mx mg f mg N



 

  

   
  

Problem 6:  The cart shown in the figure has mass mo.  It has an inclined surface as shown.  A 
uniform disk of mass m, and radius R, rolls without slip on the inclined surface.  The disk is 
restrained by a spring, K1, attached at one end to the cart.  The other end of the spring attaches to 

an axel passing through the center of the 
disk.  The cart is also attached to a wall 
by a spring of constant, K2, and a dashpot 
with constant ‘b’.   An horizontal external 
force, F(t), is applied at the center of 
mass of the disk as shown.     

a).  Derive the equations of motion for the 
system using Lagrange’s equations, 
including the non-conservative forces. 
Recall in PSet6 Tand V were found.   

Concept question:  If the coordinate ‘x’ represents the horizontal motion of the cart, what is the 
generalized force associated with F(t) due to a virtual displacement x  ? a). ( )cosF t  , b). F(t), 
c).  ( )F t x , d). 0.   

Solution:  In Pset6 the equations of motion 
for this system were found using Lagrange’s 
equations, for the case that there were no 
external non-conservative generalized forces.  
What was found for that case is still valid 
here for the left hand side of the Lagrange 
equation result.  All that remains to be done 
is to evaluate the generalized forces which do 
exist in this problem.  First, the LHS from 
Pset6.  Recall there are two degrees of 
freedom and two generalized coordinates, x 
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and x1. The two equations of motion which were found previously are: 

x equation:  1 2( ) cos 0o om m x mx k x    , 

x1 equation:  1 1 1
3 cos 0
2 omx mx k x   ,  

Finding the generalized forces:   

There are two generalized forces to be found, Qx and Qx1, associated with the two equations 
above.  It is reasonably simple to determine them by deduction.  When using this method 
proceed with one virtual displacement of a generalized coordinate at a time and require that all 
other virtual displacements be held at zero.   

In this case, find first the generalized force Qx which is associated with the virtual work done in a 
small virtual displacement x .  Assume for the moment that the other possible virtual 
displacement 1 0.x   

ˆ ˆ ˆ( ( ) ) ( ( ))
( )

x x

x

W Q x bxi F t i xi bx F t x
Q bx F t

         

   
  

 Therefore the first equation of motion becomes: 

 

1 2

1 2

( ) cos ( )
which upon rearrangement:
( ) cos ( )

o o x

o o

m m x mx k x Q bx F t

m m x bx mx k x F t





      

    
 

To determine the second generalize force associated with coordinate x1 requires that we express 
the force the external force F(t) in terms of the unit vectors associated with the moving 
coordinate system Ax1y1z1, which is attached to the cart.   

 1 1
ˆ ˆ ˆ( ) ( )(cos sin )o oF t i F t i j   .  

This makes it possible to compute the virtual work done in a virtual displacement of the 
coordinate x1, as follows: 

1 1

1

1 1 1 1 1 1
ˆ ˆ ˆ( ( )(cos sin ) ( )cos

( )cos
x x o o o

x o

W Q x F t i j x i F t x

Q F t

      



   

 
 

 With this we can complete the second equation of motion:  

11 1 1
3 cos ( )cos
2 o x omx mx k x Q F t    
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It is also possible to find the generalized forces by the more rigorous mathematical method 
expressed in the following equation: 

1

F
N

i
j i

i j

r
Q

q

 
    


 

In this problem there are two points of application of the external non-conservative forces, the 
dashpot and the external force,3 F(t).  Let them be represented by: 

1

2

ˆ

ˆ( )

F bxi

F F t i

 


It is necessary to find the position vectors associated with each force: 

1

1

1 1

1

1

1,

1,

ˆ ˆ,  where  is a constant.

ˆ,  and 0

Evaluating  leads to:

ˆ ˆQ ( )
0

N
i

j i
i j

x

x

r xi yj y
r ri
x x

rQ
q

bxi i bx
Q

 

 



 

 

 
    

   



F   

 

1

2 / / 1 1

2 2
1

1

1

2,

2,

ˆ ˆ ˆ

ˆ ˆ ˆ ˆ,  and cos sin

Evaluating  leads to 

ˆ ˆQ
ˆ ˆ ˆ(cos sin ) cos

A O B A

o o

N
i

j i
i j

x

x o o o

r r r xi yj x i
r ri i i j
x x

rQ
q

Fi i F

Q Fi i j F

 
 

 

  



    

   

 
    

 

  

F  

As found by the intuitive approach: 

( )xQ bx F t   and 
1

( )cosx oQ F t  . 
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