
2.003 Engineering Dynamics 

Problem Set 4  (Solutions)  

 

Problem 1:    

1. Determine the velocity of point A on the outer rim of the spool at the instant 

shown when the cable is pulled to the right with a velocity of v.  Assume r<R and 

that the spool rolls 

without slipping.  

  

 

 

 

 

Concept question: Will the spool roll to the left or to the right when the string is 

pulled to the right?   a) Left,  b) Right, c) Not enough information given. 

 

Problem 1 Solution: 

This problem is most easily done by computing the velocity of a point by means of a 

translating and rotating reference frame attached to the moving body. Refer to the  

diagram provided with the problem statement. 

Oxyz is an inertial non-moving reference frame. Cx1y1z1 is attached to the spool at 

point C. A, B & C are points fixed to the spool and all on the same line which passes 

through the center of the wheel. Point C is at the instant shown in contact with the 

ground. It has zero velocity by virtue of its contact with the ground. It is known as an 

instantaneous center of rotation (ICR). The velocity at A in the inertial reference 

frame Oxyz  may be expressed as /A O
v .  The solution for /A O

v is given in the next 

several lines of equations, followed by a more detailed discussion.  
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Where  vA/C  is the velocity of A with respect to point C as seen from the inertial frame 

Oxyz.  It has two terms. 	
  

 

vA/C = (d
rA/C
dt

)/Oxyz
= (∂
rA/C
∂t

)/Cx1y1z1
A

  
+

ω /o ×

rA/C
B

 

= +

ω × (vA/C )rel /o rA/C

	
  

Term	
  A	
  is	
  the	
  ‘relative’	
  velocity	
  between	
  points	
  A	
  and	
  C
attached	
  to	
  the	
  spool,	
  or	
  fixed	
  in	
  the	
  Cx1y1z1	
  frame.	
  The	
  Williams	
  books	
  calls	
  this	
  term	
  

	
  as	
  seen	
  from	
  an	
  observer	
  

(vA/C )rel
(vA/C )rel = 0 .	
  

Now	
  to	
  the	
  problem:	
  

 

ω /O =ω k̂ 	
  and	
  is	
  for	
  the	
  moment	
  unknown.	
  

	
   
vA/O = vC /O + (vA/C )rel +ω k̂ × 2Rĵ1 = −2Rω î1 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  [1]	
  

	
  	
  ω 	
  is	
  unknown	
  but	
  may	
  be	
  found	
  because	
  the	
   
vB/O 	
  is	
  given.	
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Problem 2:    

 The 2-kg spool S fits loosely at B on the rotating 

inclined rod for which the coefficient of static 

friction is  0.2s   . If the spool is located a 

distance L from A, where L=0.25m, determine the 

maximum constant rotation rate   , about a 

vertical axis passing through A,  such that the 

spool does not slip up the rod.  Let 30  . 

Concept question: If the starting position of the 

spool is moved down the rod to 0.15 m, will the 

angular rate be higher when the spool begins to 

slide up the rod? (a) Yes, (b) No, (c) Not sure.  

 

 

 

Problem 2 Solution: 

What is the maximum rotation rate such that the spool does not move along the 

rod? In other words, the rotation rate such that the spool will have no velocity 

component along the rod. The only velocity of the spool will be due to its constant 

rotation. 

 

 

Side view

B
z

x
A

k̂



L

 

vB/O = vC /O +
vB/C = 0 + 0 + ω /o ×

rB/C =Vî

Vî =ω k̂ × (R − r) ĵ = −ω (R − r)î
	
  

Therefore	
  ω = −V
R − r

	
  which	
  may	
  be	
  put	
  into	
  equation	
  [1]	
  	
  

since	
  
 
A/O = − ω =

R − r
î1 = î , ĵ1 = ĵ, k̂1 = k̂

v 2R î ( 2R )Vî .	
  Note	
  that	
  at	
  the	
  instant	
  shown	
  the	
  unit	
  vectors	
  of	
  

frames	
  O	
  and	
  C	
  align	
  and	
  are	
  interchangeable.,	
  i.e.	
   .	
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Describe the motion: 

The second expression, showing the time rate of change of the linear momentum 

provides a particularly  direct solution.   

	
  

Use	
  two	
  moving	
  reference	
  frames.	
  The	
  first	
  A 	
  is	
  attached	
  to	
  the	
  shaft	
  and	
  rotates	
  
with	
  the	
  shaft	
  at	
   .	
  The	
  second	
  is	
  attached	
  to	
  the	
  spool	
  at	
  B	
  and	
  r

xyz

otates	
  with	
  
the	
  spool.	
  Call	
  it	
  B


ω 
x1y1z

/O =
1

ω
.	
  It	
  is	
  needed	
  so	
  that	
  the	
  for
k̂

ces	
  parallel	
  to	
  and	
  perpendicular	
  
to	
  the	
  rod	
  may	
  be	
  easily	
  identified.	
  In	
  order	
  for	
  dynamic	
  equilibrium	
  to	
  be	
  satisfied	
  
on	
  the	
  spool	
  so	
  that	
  it	
  does	
  not	
  slip	
  Newton’s	
  2nd	
  law	
  may	
  be	
  used.	
  

 
Fext .spool = maB/O =

dt
P/O

  d ∑ 	
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mass times the centripetal accelerationt 

 

 

This term can be broken into vector components in the î1 and k̂1 directions. I 

particular î may be expressed as:  

 

î = cosφî1 − sinφk̂1

Fext∑ = −mLΩ2î = −mLΩ2 (cosφî1 − sinφk̂1)

	
  

Next	
  a	
  free	
  body	
  diagram	
  is	
  needed	
  to	
  identify	
  the	
  external	
  forces	
  acting	
  on	
  the	
  
spool.	
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Fî1 = − f −mgsinφ = −∑ mLΩ2 cosφ

F∑ k̂1
= N −mgcosφ = mLΩ2 sinφ

	
  
(1)	
  

(2)	
  

The	
  model	
  of	
  friction	
  that	
  is	
  commonly	
  used	
  is	
  that	
   f = µN 	
  (3).	
  

Solve	
  (2)	
  for	
  N.	
  	
  	
  Multiply	
  the	
  expression	
  for	
  N 	
  by	
  µ 	
  and	
  substitute	
  into	
  (1)	
  for	
  f.	
  

N = mgcosφ +mLΩ2 sinφ 	
  from	
  (2).	
  Then	
  from	
  (1)	
  

f = µN = −mgsinφ +mLΩ2 cosφ

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  = µ(mgcosφ +mLΩ2 sinφ) 	
  	
  	
  	
  (4)	
  

Solving	
  equation	
  (4)	
  for	
  Ω2 	
  leads	
  to:	
  

Ω2 = −mg(µ cosφ + sinφ)
mL(µ sinφ − cosφ) 	
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Problem 3.   

This is a simple pendulum with a torsional spring at the pivot.  Gravity acts. The 
torsional spring creates a restoring torque, which is proportional to the angle of 
rotation of the rod. The rod is of length 2L, rigid and without mass.  Two masses are 
attached to the rod, one at the midpoint and one at the end.  For the purpose of this 
problem the masses may be considered to be particles with mass M. 

 
 (a)  The masses and the rigid rod make 

up one rigid body, which has at most 6 

degrees of freedom.  However, in this 

problem the rigid body has 5 external 

constraints.  Thus it has only one degree 

of freedom and will require only a single 

coordinate to completely describe its 

motion.  Identify the 5 constraints.   

(b)  Find the equation of motion of this 

pendulum by consideration of the time 

rate of change of the angular 

momentum computed with respect to 

the pivot.  Be sure to include a free 

body diagram. 

 
 
Concept Question:  The natural 

frequency of the pendulum without a torsional spring is independent of mass  and 

equal to  

   

2

3
n

g

L

 
 How will the natural frequency change as a result of the addition 

Independent of the mass of the spool. 

for	
  

µ = 0.2
φ = 30o

L = 0.25m

g = 9.81m s2

Ω = 5.87 radians sec
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of the torsional spring.   (a)  Increase, (b) Decrease, (c) Stay the same. 

 

Problem 3 Solution: 

3a) Given: N=1 rigid body This system has 1  Degree of Freedom and therefore 

must have 5 constraints.  

DOF = 6N-C = 1 ®  C = 5 Constraints 

They are: No translation allowed at the pivot in x, y and z, which accounts for 3 of 

the 5 constraints. No rotation about x or y axes, which provides the two additional 

constraints. 

3b) Obtain an EOM by consideration of angular momentum. This requires an 

application of Euler’s law about a fixed point. Because this rigid body is defined in 

terms of two simple particles it is easier to compute angular momentum from its 

basic definition than to bother with finding a mass moment of inertia. 

Euler’s law for rotation about a fixed point O.  

/
/

/ 1 1 2 2 2

1 2

1 / 1

2 / 2

2
/ 1 2 1 2

ˆ,  r 2

ˆ ˆˆ

ˆ ˆˆ2 2
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



 

A free body diagram is constructed as shown below and Euler’s law is applied. 

/ 1 2

2/

ˆ[ ( 2 ) sin ]
ˆ          [ 3 sin ]

ˆ           = 5

O t

t

O

k M M gL k

k mgL k

dH
mL k

dt

  

 



   

  




 

Which may be rearranged to provide an EOM in standard form. 

25 3 sin 0tmL k mgL      
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For small angular motion about  which provides a linearized EOM. 
25 ( 3 ) 0tmL k mgL     

This is now in the standard form for any single DOF pendulum and is modeled as a 

linear 2nd order ODE. 

 where the natural frequency  is given by:  2

3
5

eq t
n

eq

k k mgL

I mL



   

 

Problem 4: 

This problem has multiple bodies. It consists of two masses, with springs and a 

dashpot, mounted on rollers on a horizontal surface. Unlike particles which are 

assumed to be points of mass, rigid bodies have finite dimensions and therefore 

rotational inertia. Each rigid body has six possible degrees of freedom: three in 

translation and three in rotation. The number of degrees of freedom is given by the 

expression 6DOF N C  , where N is the number of rigid bodies and C is the 

number of constraints. DOF is the number of independent degrees of freedom. For 

θ = 0 ,	
  θ ≈ sinθ 	
  

 Ieq
θ + keqθ = 0 	
   	
  ω n 	
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each DOF you need to assign a coordinate to describe the motion.  For most 

mechanical systems the number of DOFs equals the number independent 

coordinates needed to completely describe the motion of the system.  When this is 

true the systems are called holonomic. More on that topic will be dealt with later in 

the course.  This system is holonomic.  You will use the equation above to establish 

the number of independent coordinates needed to solve this problem.    

(a) In this problem there are 2 rigid bodies and a possible 12 degrees of freedom.  

However, there are 10 constraints, which leads one to the conclusion that only two 

independent coordinates are needed to describe the motion. Describe the ten 

constraints that reduce the number of degrees of freedom to two.  

(b) Draw free body diagrams, assign two appropriate coordinates, and find the two 

equations of motion which characterize the system. Hint: To get the signs correct on 

the spring and dashpot forces, one at a time assume positive displacements and 

velocities of each coordinate and deduce the resulting directions of the spring and 

damper forces. Draw these forces on your free body diagrams. It is also strongly 

suggested that you assign coordinates so that they will be zero when the system is in 

its static equilibrium position.  

 

Concept question: If spring constant k1 were zero, the object is no longer 

constrained in the horizontal direction. The system still has two natural frequencies. 

Do you think it will be possible for the two masses to vibrate(oscillate) in such a way 

that the center of mass of the system does not move.   (a) Yes (b) No (c) Not sure  

Problem 4 Solution: 

a) For holonomic system such as this one the number of independent coordinates 

required to completely describe the motion is equal to the number of degrees of 

freedom (DOF). There are two rigid bodies (N=2). 

DOF = 6N-C = 6*2-10 = 2 
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The number of constraints (C) is 10. They may be identified by considering each 

mass (rigid body) separately.  

M1: No rotation about x, y or z axes and no translation in the y or z directions. Thus 

C1 = 5.  

M2: Same constraints as M1, thus C2 = 5.   C = C1+C2 =10 constraints on the system. 

DOF = 2 ®  2 Independent coordinates are required. 

For each mass the only allowable motion is translational in the x direction. Each 

rigid body is assigned its own coordinate, x1 and x2. In the absence of an initial 

disturbance or external force in the x direction these bodies will sit motionless in a 

“state equilibrium condition”. Let x1 = 0 and x2 = 0 in this state. This will generally 

lead to the simplest EOM. Two equations of motion may be obtained by a direct 

application of Newton’s 2nd law. Begin by drawing a free body diagram (fbd) for 

each mass. 

When multiple bodies are interconnected with springs and dashpots, it is easy to 

make errors in the sign on direction of the forces resulting from arbitrary 

displacements and velocities. A foolproof method is useful. One is recommended 

here. 

Method: Consider each rigid body separately so as to obtain on EOM for each rigid 

body. Then, one at a time, assume small positive deflections and velocities for all 

allowable DOFs in the system. In this case that will be  x1,x1,x2,  and x2 . Begin with 

M1. 

M1 fbd construction: If M1 moves with positive x1 and  x1, the spring and damper 

forces resist the motion. These forces are in the negative x1 direction and are drawn 

that way on the fbd. In other words the sign of the force is indicated by the direction 

of the arrow. Positive motions of body M2 require  x2,  and x2 are positive. These 

result in negative, resisting forces on M2, but positive directed forces on M1. The 

final fbd for M1 is shown in the figure below. Next, one repeats the same sequence of 

assumed positive values of all displacements and velocities and then the resulting 

forces on M2 are deduced and drawn, and shown in the figure for the fbd of M2. 
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As the EOM is written, the direction of the force arrow on the fbd establishes the 

sign for each term. 

Since no minus sign appears in the final expression for N1 its direction is as drawn 

on the fbd. 

1 1 1 2 1 2 2 2 1 2 2

1 1 2 1 2 2 1 2 1 2 2

2

2 2 2 2 2

2 2 2 2 2 1 2 2 2 1

Rearranging to standard form:
( ) 0

EOM for M :
0

Rearranging to standard form:

x

y

x

F M x k x k x k x b x b x

M x b x b x k k x k x

F N M g M y N M g

F M x b x b x k x k x

M

      

     

     

    







2 2 2 2 2 1 2 2 2 1 0x b x b x k x k x    

 

Problem  5. 

A mass m1, attached to a string, is on top of a frictionless table.  The mass is rotating 

EOM	
  for	
  M1  Fy = N1 −M1g = M1y = 0→ N1 = M1g∑:	
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about a hole in the table through which the string passes. The initial rate of rotation 

is   and the initial distance from mass m1 to the hole is lo . At the other end of the 

string, lying exactly on the axis of rotation, is another mass, m2. Note that gravity 

acts and that the contact of the string with the hole is without friction.   

a) Determine the number of degrees of freedom for this problem. 

b) Find the equation(s) of motion. 

c) Based on initial conditions given will the mass m1 begin moving inward or 

outward? 

 

Concept question:  Is total system energy conserved in this problem after it is 

released? 

(a) Yes,  (b) No, (c) Depends on initial conditions 

 

 

 

 

 

 

 

 

 

 

 

Problem 5 Solution: 

5a) Find the number of degrees of freedom that this system has.  DOF = 3M-C, where 

M = 2, the number of particles.  DOF = 6 – C, where C is the number of constraints. 

Referring to the side view and top view figures below, M1 has 1 constraint—no 

motion in the z direction.   M2 has 2 constraints—It is assumed to move only in the z 

direction and is constrained in x and z.  A 4th constraint exists: the string connecting 

M1 and M2  is of fixed length. Therefore  r = z and r = z. DOF = 6 – 4 = 2. Two 

∴	
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independent coordinates are needed to completely describe the motion.  r and q  

will be used. 

 

5b) Find the equations of motion:  

Begin by drawing free body diagrams 

for each mass. 

 

 

 

 

 

 

 

 

At the beginning there are three unknowns: the motions, r and q  and the string 

tension T. There are three laws that can be applied: Newton’s 2nd applied to each 

mass and Euler’s torque-angular momentum relation applied to the mass circling 

the table top.  

2
1 1 1

2
1

2 2 2 2

2 2

ˆ ˆ: ( )

                 ( )      [1]
:

                          [2]
Substituting expression [1] into [2] for T and rearranging yi

r r

z

M F M a M r r r Tr

T M r r

M F M z M r T M g

T M r M g





    

   

   

  





2
1 2 1 2

elds:
( ) 0        [3]M M r M r M g   

 

Equation [3] is one of the two sought for EOMs.  
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Next apply Euler’s law for rotation about a fixed point O. 

/
/

/ / / 1 /

2
/ 1 1

2/
1 1

0  There are no external torques with respect to point O.

ˆ ˆ[ ( )]
ˆ ˆˆ ˆ( )

ˆ( 2 ) 0     [4]

O
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O i O i O O

O

O

dH

dt

H r P rr M rr

H rr M k rr M r k

dH
M r rM r k

dt





 

 

 

    

   

  




 

H /O = constant®angular momentum is conserved. [4] after dropping k̂  is the 2nd 

EOM. 

5c) Upon release with initial conditions r = lo and  does M1 start inward or 

outward. The answer is readily obtained from expression [3] after substitution of 

the initial conditions then solving for  r . 

@ t = 0  2
2 1 1 2/oz r M g M l M M         It will depend on which term in the 

numerator is largest. 

 

 

	
   	
  

 θ =Ω 	
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