
2.003 Engineering Dynamics 

Problem Set 6  with solution 

 

Problem 1:  A slender uniform rod of mass m2 is attached to a cart of mass m1 at a frictionless 
pivot located at point „A‟.  The cart is connected to a fixed wall by a spring and a damper.  The 

cart rolls without friction in the 
horizontal direction.  The position of the 
cart in the inertial frame Oxyz is given by 

ˆxi .  

a). Assuming that the motion of the cart 
and slender rod is the result of initial 
conditions only, find expressions for T 
and V, the kinetic and potential energy of 
the system in terms of , , ,and .x x     

Concept question:  The kinetic energy 
of the rod may be expressed by the 

equation 2
/

1
2rod zz AT I  :  a). True, b). 

False.  Answer:  False—the rod also has velocity terms involving x , the velocity of the cart.   

Solution:  This is a planar motion problem.  However, although the axis of rotation is 
perpendicular to the plane of the motion, the axis of rotation is not at a fixed point.  Therefore to 

find T it is best to use the form / / /
1 1
2 2G O G O GT mv v H 

  (Eq. (1) in appendix) 

Since there are two rigid bodies, it is necessary to apply this equation twice:  first for the cart and 
second for the rod rotating about the axis at „A‟ on the cart.   

2
/ / /

1 1 1
2 2 2cart G O G O GT mv v H mx  
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L
V kx m g     where x=0 is at the unstretched spring position, which is also the 

static equilibrium position for the cart.  The static equilibrium position for the rod is when it is 
hanging straight down.  The coordinate   is chosen so that it is zero at static equilibrium.  In this 
way the potential function, V, for this problem is zero at static equilibrium.   

Problem 2:   

Two identical masses are attached to the end of massless rigid arms as shown in the figure. The 
vertical portion of the rod is held in place by bearings that prevent vertical motion, but allow the 

shaft to rotate without friction.  A torsion spring with 
spring constant Kt resists rotation of the vertical 
shaft.  The shaft rotates with a time varying angular 
velocity   with respect to the Oxyz inertial frame. 
The arms are of length L. The frame Ax1y1z1  rotates 
with the arms and attached masses.  Note that the 
angle    is fixed.  

a) Find T and V, the kinetic and potential energy 
for this system.   
 

Concept question:  Is it possible to find the equation 
of motion of this system by requiring that:  

  0d
T V

dt
   .  a). Yes, b). No.  Answer:  Yes, this is a useful approach for single dof problems 

with no non-conservative forces.  
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Solution:  This rigid body rotates about a fixed axis passing through „A‟.  However, it is not a 
planar motion problem.  We may either use the full 3D formulation for the computation of T for 

a rigid body as given by / / /
1 1
2 2G O G O GT mv v H   or because it rotates about a fixed axis at 

„A‟ we may use the form   / /
1 1
2 2A AT H I       , which is easier in this case because in 

Pset 5 we found   / / = A AH I  , where 

 
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It only remains to compute T from the expression  
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The potential energy comes from the torsional spring.  The zero spring torque position of the 
rotor is selected as the reference position for V=0.  When the system is in static equilibrium, the 
coordinate 0  .  Therefore, 

21
2 tV K 

  

Problem 3:  A particle of mass m slides down a frictionless surface.  It then collides with and 
sticks to a uniform vertical rod of mass M and length L.  Following the collision, the rod pivots 

about the point O.  Point G is the mass 
center of the rod.   

a).  Find the kinetic energy, T, and the 
potential energy, V, of the system after 
the collision as a function of  and .    

Concept question: Angular 
momentum with respect to point A and 
(T+V) are both constant after the 
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collision. A). True, B)False.    Answer:  False, T+V= constant, but angular momentum is not. 

Solution: 

To compute the angular velocity prior to the collision can be obtain by conservation of energy.  
Let To and Vo be the potential and kinetic energy at the time of release at the top of the slope.  At 
this time let Vo= 0.  To=0 because it is at zero speed.  There is no friction so total energy is 
conserved. Let points 1 and 2 in the figure above correspond to 0   just before(1) and just 
after(2) the collision. Let state 3 be at any allowable position, , after the collision. Therefore,  

1 1 1

2
1 / 1

/ /

1

Where 
1
2

2 ,  because A is a non-moving inertial poin .
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The angular momentum of the mass, m, at point 1 is simply  

1/ / / /
ˆˆˆ ˆ 2 2A B A O OH r P Lr mv Lr m gh mL ghk         

Because angular momentum is conserved during the collision: 

1/ 2/ / 2
2

2 2
/

2
1/ 2 2/

2

2

ˆ

Where after the collision ( / 3)
3

ˆ ˆ2 ( / 3)

 at point 2 may be solved for, yielding the expression
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.   

The last step is to realize that after the collision total energy is conserved, as may be expressed 
by the equation 

2 2 3 3T V T V     

For this part of the problem, let the potential energy reference position be such that when 

20,  then V 0.    Substituting into the equation above, yields: 
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The maximum angle of  , could, for example be solved for by requiring V3=T2. 

Problem 4:  

A pendulum consists of a rectangular plate (of thickness t) made of a material of density  , 
with two identical circular holes (of radius R). The pivot is at A.   

 
a).  Find expressions for T and V, 
the kinetic and potential energies 
of the system in terms of the angle 
of rotation about point A.   
b).  This is a planar motion 
problem.  How many degrees of 
freedom does this body have.  
What are the contraints on this 
rigid body.   
 

Concept question:  According to a strict definition of „translation‟:  “All points on a rigid 
body must travel in parallel paths”, does this rigid body exhibit rigid body translation?:  a). 
Yes, b). No,  Answer:  No, By strict definition, this object exhibits pure rotation about A.  All 
points move in circular paths.   
 
Solution: a).   It is always correct for rigid bodies to use the general 3D formula for kinetic 
energy, T, given by  

/ / /
1 1
2 2G O G O GT mv v H  .  However, since this 

is planar motion about a fixed axis passing 
through „A‟ and this axis is a principal axis, then 
the following simpler expression may be used.   
 
 
 
 

5

. .

. .



   2
/ /

1 1  where .
2 2A zz A z zT I I          
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Let the reference position for V be 0.   Then V for the system is given by: 

2

( 2 ) (1 cos )
2

( 2 ) (1 cos )
2

a
V M m g

a
V t ab R g

  

  



  

  
 
b).  This is planar motion about a fixed axis.  Only one coordinate is required to completely 
describe the motion.  That coordinate is .   In planar motion each rigid body has at most 3 
degrees of freedom, two in translation and one in rotation.  In this problem because the body 
is not allowed to translate in x or y at the pivot point „A‟ it has two translational constraints.  
 

Problem 5:    

Two uniform cylinders of mass m1 and m2 and radius R1 and R2 are welded together. This 
composite object rotates without friction about a fixed point. An inextensible massless string is 

wrapped without slipping around the larger cylinder. 
The two ends of the string are connected to the ground 
via, respectively, a spring of constant k and a dashpot 
of constant b. The smaller cylinder is connected to a 
block of mass mo via an inextensible massless strap 
wrapped without slipping around the smaller cylinder. 
The block is constrained to move only vertically.  

a) Find expressions for T and V the kinetic and 
potential energy of the system.  

Concept question:  For small values of the dashpot 
constant, b, if this single degree of freedom system is 
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given an initial displacement from its static equilibrium position, will it exhibit oscillatory 
motion after release?  a)Yes, b)No.  Answer:  Yes, it will oscillate about its static equilibrium 
position.  

Solution:   

This system consists of two rigid body masses, and yet requires only one independent coordinate 
to completely describe the motion of the system.   The coordinate to be used in this solution is 

the rotation angle,   , of the wheel about the 
fixed axis at the center of the wheel.  If the 
wheel rotates through an angle   then the 
small mass moves a distance 1 .y R   The 
strap connecting the mass to the wheel is a 
constraint.  This is also a planar motion 
problem.  The figure at left is the free body 
diagram from PSet5.  It will be helpful in 
working out the relationships we need to find 
the kinetic and potential energy of the system.    

Because of the spring, this system will oscillate 
about a static equilibrium position.  At rest the 

spring must exert a torque which exactly balances the torque caused by the hanging weight.  By 
referring to the free body diagram above, the torques about the axis of rotation at „O‟ may be 
identified and required to sum to zero.  Expressed as an equation:  

1
/ 2 1

2
0 .o

O static o static

static

m gR
kR m gR

kR
                                                               (1) 

It is usually advantageous to write the equation of motion such that the motion variable is zero at 
equilibrium.  In this case, let 0d  when the system is at rest in static equilibrium, where the 
subscript „d‟ refers to the dynamic rotation.  Therefore the total rotation from the zero spring 
force position is given by ,  by taking time derivatives we can easily show thattotal static d        

 and .total d total d                                                                                                   (2) 

Now find T and V with d  as the dynamic motion coordinate. 

In general it is much more straightforward to work out the kinetic energy expression than the 
potential. It is done first here.   

 

2 2
2 2 2 21 2

/ 1 1 2
1 1 1
2 2 2 2 2m rotor o zz G d o do

R R
T T T m y I m R m m 

 
       

      (3) 
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The evaluation of the potential energy requires that the analyst make choices that will effect the 
final form of the equation of motion.  One of the choices is what to use as the reference level for 
the potential energy function.  In this case the reference level will be associated with the choice 
of the measuring the angle of rotation with respect to the static equilibrium position of the 
system.   

The potential energy of the system is defined with the following equation, which states that the 
potential energy of the system is given by the negative of the work done by the external 
conservative forces in the system.  For mechanical systems, the only conservative forces are 
those from gravity and from springs.   

dV T d F dr   
                                                                                                  (4) 

In this case the work is most directly expressed in terms of torque.  Therefore, 

2
1 2

0

2 2 2
1 2 2 2

0 0

2
1 2

ˆ ( )

ˆ( )

because from static equilibrium as expressed in equation (1) 
ˆ( ) 0

and

d

d o d static d

d d

o static d d d d

o static

V T d m gR k KR d

V m gR k KR KR d KR d

m gR k KR



 

   

    



        
   

        
  

  

  

 

2 2
2

1 therefore V=
2 dKR 

                                             (5)                             

Careful choice of the reference position has yielded an exceptionally simple expression for the 
potential energy V.  In fact it does not even involve gravity.  An experienced dynamicist would 
know to expect that gravity could be eliminated from the EOM just by finding the static 
equilibrium condition expressed in equation (1).   

Here is the  general rule:  Any time the gravity term in the equation of static equilibrium does 
NOT change as the motion coordinate is varied, it is possible to select a reference position for 
that coordinate  so that a gravity term will not appear in the final equation of motion.   In this 
problem the motion variable(coordinate) is the angle of rotation.  When summing external 
torques in equation (1) the torque caused by gravity was simply / 1

ˆ
O om gR k  , which is not a 

function of the angle of rotation of the rotor.  A counter example would be a simple pendulum.  
There the torque caused by gravity changes with the angle the pendulum makes with the vertical.   

For this problem the bottom line answer is: 

8

. .

.



2 2
2 21 2
1 1 2

2 2
2

1
2 2 2

1V= , where  is measured from the static equilibrium position.
2

o d

d d

R R
T m R m m

KR



 

 
   

   

Problem 6:    

A wheel is released at the top of a 
hill.  It has a mass of 150 kg, a 
radius of 1.25 m, and a radius of 
gyration of kG =0.6 m.    

a). After release from the top of 
the hill the wheel rolls without 
slip down the hill.  Find the 
kinetic energy, T, after the center 
of mass of the wheel has 
descended a vertical height „h‟.   

b).  Compute the ratio of the translational kinetic energy to the total kinetic energy of the system. 

Concept question   a) If the wheel slips during its passage down the hill, is it correct to model it 
as a planar motion problem.  A). Yes, b). No,    Answer:  Yes,  its translational motion is 
confined to the x-y plane and the axis of rotation is a principal axis which is perpendicular to the 
x-y plane.    

Solution: 

Without slip this rigid body has one degree of freedom and therefore requires only one 
independent coordinate to completely describe the motion.  The no slip condition provides a 
relationship between translation and rotation of the wheel:   and x=Rx R    . 

In general the kinetic energy of a rigid body can be written as:  

/ / /
1 1
2 2G O G O GT mv v H  ,                                                                                         (1)              

which is valid for 3D motion of any regid body.   

If the body rotates about a fixed axis passing through a point „A‟ then one may substitute the 
following formula:   

  / /
1 1
2 2A AT H I                                                                                                 (2) 
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For planar motion problems when the axis of rotation, passing through „A‟ is a principal axis the 
formula becomes simpler still.  This is a planar motion problem and the wheel has an axis of 
symmetry about which it rotates.  That axis is a principal axis.  T may be written using the 
simple planar motion equation for T about a fixed axis.   

   2
/ /

1 1  where i is the axis of rotation.
2 2A ii A iT I I                                                 (3) 

For planar motion problems in which the body rotates about a principal axis passing through the 

center of mass, G, then it is also appropriate to use the form 2
/ / /

1 1
2 2G O G O ii G iT mv v I          (4) 

A wheel rolling without slip may use either equation (3) or (4).  In this case  

0
0

x

y

z z



 

 

   
   

    
   
   

 

2 2 2 2 2
/

1 1 1 1( )
2 2 2 2zz G z GT m x I m R m      

                                                                    (4) 

Let state 1 be at the release point and state 2 be after descending a vertical distance „h‟, the 
following is an expression of conservation of total system energy: 

1 1 2 2 1 1 2 2, where V 0T V T V T T V          

Let s be a vertical coordinate, positive downward.  s=0 at the top of the hill.  The potential 
energy after descending a distance „h‟ is therefore,  

2 0 0
ˆ ˆh h

V mgs dss mg ds mgh        

2 2 2 2 2
2 / 2

2
2 2

1 1 1 ( )
2 2 2

2
( )

zz G z G

G

T m x I m R V mgh

gh

R

      

 


  




 

Part (b).  The first term in equation (4) above is the kinetic energy associated with translation and 
the second term is the kinetic energy associated with rotation about the center of mass.  The ratio 
of the translational kinetic to the total kinetic energy is given by: 

2
2

2 2
2 2 2

1 ( )
2

1 1( )
2 2

trans

G
G

m R
T R

T R
m R m



  

 



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Problem 7:  The cart shown in the figure has mass mo.  It has an inclined surface as shown.  A 
uniform disk of mass m, and radius R, rolls without slip on the inclined surface.  The disk is 
restrained by a spring, K1, attached at one end to the cart.  The other end of the spring attaches to 

an axel passing through the center of 
the disk.  The cart is restrained by a 
second spring, K2, which is attached to 
a non-moving wall.   

a).  Find expressions for the kinetic 
energy, T, and potential energy, V, for 
the system. 

b).  Use Lagrange equations to find the 
equations of motion of the system. 

Concept question:  How many independent coordinates are required to account for the kinetic 
and potential energy in the system:  a). 1, b). 2, c). 3.  Answer:  b). This system has two degrees 
of freedom and requires two independent coordinates.  

Solution:  

This is a two degree of freedom system.  Two independent coordinates are required.  Let x be the 
position of the cart in the horizontal direction relative to the inertial frame.  Let x=0 be the static 
equilibrium position of the cart.  In this case this coincides to the zero spring force position as 

well. The potential energy stored in the spring is simply 
2

2
2

1
2kV k x .  The second coordinate is 

x1, the position of the roller relative to the cart.  Let x1=0 be the static equilibrium position of the 
roller.  A free body diagram of the roller at static equilibrium is shown in the first figure below 

for forces in the direction of coordinate x1.  
Below that is a free body diagram for the 
dynamic case when x1is the movement of the 
wheel about the static position.  

a).  Begin by computing the potential energy 
function.  Note that in the free body diagram for 
the dynamic case, the static force in the spring 
exactly cancels the gravitational force on the 
object.  The only term left in the potential energy 

term associated with the motion of the roller, Vwheel , is that due to the stretch of the spring from 
the static equilibrium position.  The potential energy function V is independent of gravity.  This  
will simplifying the final equation of motion.   
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        
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Next find the kinetic energy T.  This 
problem has two rigid bodies.  The total 
kinetic energy is the sum of the kinetic 
energies of each rigid body.    

For that part due to the rolling of the 
wheel, it is helpful to identify that this is 
a planar motion problem for which the 
axis of rotation is a principal axis of the 
wheel and it is perpendicular to the 

plane of the translational motion of the system.  

21
2

cart roller

cart o

T T T

T m x

 


 The kinetic energy of the roller involves both translation and rotation.  The 

appropriate equation to use is 
2 2 2

/ /

1

1 1
2 2

where 0,  and /

roller G O G O xx x yy y zz z

x y z

T mv v I I I

x R

  

   

     

      

 For a uniform disk  
2

/
1
2zz GI mR

The remaining work is to find vG/O the velocity of the center 
of mass of the wheel relative to the inertial frame. Let G be the center of mass of the wheel.  
Then the velocity of G in the inertial frame is given by  

/ / / 1 1 1
2 2

/ / 1 1

ˆ ˆ ˆ ˆ ˆ(cos sin )

2 cos
G O C O G C o o

G O G O o

v v v xi x i xi x i j

v v x x xx

 



      

    The expression for the total kinetic 
energy of the system may now be obtained.   
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2
2 2 2

1 1

2
2 2 1

1 1

2 2
1 1

1 1 1( ) [ 2 cos ]
2 2 2 2
1 1 1( ) [ 2 cos ]
2 2 2 2
1 1 3( ) [ 2 cos ]
2 2 2

o o

o o

o o

R
T m m x m x xx m

x
T m m x m x xx m

T m m x m x xx

 





    

    

   

  

b)  Find the equations of motion using Lagrange equations, which may be stated as:   
 

j

j j

d L L
Q

dt q q

  
     

 where L=T-V.  For purely mechanical systems that have only 

springs and gravity as potential forces, the Lagrange equations may be more usefully 
written as follows: 

( ) ( ) ( )
j

j j j

d T T V
Q

dt q q q

   
       

, where the qj are the generalized coordinates.  This 

equation must be applied once for each generalized coordinate in the problem.  In this 
problem, there are two generalized coordinates, x and x1.  T and V are functions of 

1 1,  x, x ,  and x .x  For the current problem there are no external non-conservative forces so 
the right hand side of the above equation is zero.  Numbering the terms on the LHS as 1, 
2 and 3 in order of appearance, the three terms may be evaluated in a systematic way.   
 
Begin with the generalized coordinate x: 
 

Term 1:   

 2 2
1 1 1

1

( ) 1 1 3( ) [ 2 cos ] ( ) cos
2 2 2

( ) cos

o o o o

o o

d T d d
m m x m x xx m m x mx

dt x dt x dt

m m x mx

    
         

    

  

 


 

Term 2: 
( ) 0T

x




  

Term 3:  2
( )V

k x
x





 

Summing terms 1, 2 and 3 yields: 1 2( ) cos 0o om m x mx k x    , which is the first equation of 
motion.  

Turning to the second application of Lagrange, compute the three terms using the second 
generalized coordinate x1.   
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Term 1:   

2 2
1 1 1

1 1

1

( ) 1 1 3 3( ) [ 2 cos ] [ cos ]
2 2 2 2

3 cos
2

o o o

o

d T d d
m m x m x xx mx mx

dt x dt x dt

mx mx

    
        

    

 

 



 

Term 2 is zero 

and Term 3 is :
 1 1

1

( )V
k x

x




  

Summing terms 1, 2 and 3 yields: 1 1 1
3 cos 0
2 omx mx k x   , which is the second equation of 

motion.  
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