
2.003 Engineering Dynamics 
Problem Set 6 
See appendix at the end of the problem set on how to compute T and V. 
 
Problem 1:  A slender uniform rod of mass m2 is attached to a cart of mass m1 at a frictionless 
pivot located at point „A‟.  The cart is connected to a fixed wall by a spring and a damper.  The 
cart rolls without friction in the horizontal direction.  The position of the cart in the inertial frame 

Oxyz is given by ˆxi .  

a). Assuming that the motion of the cart 
and slender rod is the result of initial 
conditions only, find expressions for T 
and V, the kinetic and potential energy of 
the system in terms of , , ,and .x x     

Concept question:  The kinetic energy 
of the rod may be expressed by the 

equation 2
/

1
2rod zz AT I  :  a). True, b). 

False. 

 

Problem 2:   

Two identical masses are attached to the end of massless rigid arms as shown in the figure. The 
vertical portion of the rod is held in place by bearings that prevent vertical motion, but allow the 

shaft to rotate without friction.  A torsion spring with 
spring constant Kt resists rotation of the vertical 
shaft.  The shaft rotates with a time varying angular 
velocity   with respect to the Oxyz inertial frame. 
The arms are of length L. The frame Ax1y1z1  rotates 
with the arms and attached masses.  Note that the 
angle    is fixed. 

Find T and V, the kinetic and potential energy for 
this system.   

Concept question:  Is it possible to find the equation 
of motion of this system by requiring that:  
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  0d
T V

dt
   .  a). Yes, b). No. 

Problem 3:  A particle of mass m slides down a frictionless surface.  It then collides with and 
sticks to a uniform vertical rod of mass 
M and length L.  Following the 
collision, the rod pivots about the point 
O.  Point G is the mass center of the 
rod.   

a).  Find the kinetic energy, T, and the 
potential energy, V, of the system after 
the collision as a function of  and .    

Concept question: Angular 
momentum with respect to point A and 
(T+V) are both constant after the 
collision. A). True, B)False 

 

Problem 4:  

A pendulum consists of a rectangular plate (of thickness t) made of a material of density  , 
with two identical circular holes (of radius R). The pivot is at A.   

 
a).  Find expressions for T and V, 
the kinetic and potential energies 
of the system in terms of the angle 
of rotation about point A.   
b).  This is a planar motion 
problem.  How many degrees of 
freedom does this body have.  
What are the contraints on this 
rigid body.   
 

Concept question:  According to a strict definition of „translation‟:  “All points on a rigid 
body must travel in parallel paths”, does this rigid body exhibit rigid body translation?:  a). 
Yes, b). No,   
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Problem 5:    

Two uniform cylinders of mass m1 and m2 and radius R1 and R2 are welded together. This 
composite object rotates without friction about a fixed point. An inextensible massless string is 

wrapped without slipping around the larger cylinder. 
The two ends of the string are connected to the ground 
via, respectively, a spring of constant k and a dashpot 
of constant b. The smaller cylinder is connected to a 
block of mass mo via an inextensible massless strap 
wrapped without slipping around the smaller cylinder. 
The block is constrained to move only vertically.  

a) Find expressions for T and V the kinetic and 
potential energy of the system.  

Concept question:  For small values of the dashpot 
constant, b, if this single degree of freedom system is 
given an initial displacement from its static 

equilibrium position, will it exhibit oscillatory motion after release?  a)Yes, b)No. 

 

Problem 6:    

A wheel is released at the top of a hill.  It has a mass of 150 kg, a radius of 1.25 m, and a radius 
of gyration of kG =0.6 m.    

a). After release from the top of 
the hill the wheel rolls without 
slip down the hill.  Find the 
kinetic energy, T, after the center 
of mass of the wheel has 
descended a vertical height „h‟.   

b).  Compute the ratio of the 
translational kinetic energy to the 
total kinetic energy of the system. 

Concept question:   If the wheel slips during its passage down the hill, is it correct to model it as 
a planar motion problem.  A). Yes, b). No 
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Problem 7:  The cart shown in the figure has mass mo.  It has an inclined surface as shown.  A 
uniform disk of mass m, and radius R, rolls without slip on the inclined surface.  The disk is 
restrained by a spring, K1, attached at one end to the cart.  The other end of the spring attaches to 
an axel passing through the center of the disk.  The cart is restrained by a second spring, K2, 

which is attached to a non-moving 
wall.   

a).  Find expressions for the kinetic 
energy, T, and potential energy, V, for 
the system. 

b).  Use Lagrange equations to find the 
equations of motion of the system. 

Concept question:  How many 
independent coordinates are required to account for the kinetic and potential energy in the 
system:  a). 1, b). 2, c). 3.   

 
Appendix:  Computation of T and V for mechanical systems 
In general the kinetic energy of a rigid body can be written as:  

/ / /
1 1
2 2G O G O GT mv v H  ,                                                                                            (1)              

which is valid for 3D motion of any rigid body.  In these expressions G refers to the center of 
mass of each rigid body.  If the angular momentum can be expressed in terms of the mass 
moment of inertia matrix, computed with respect to the center of mass of the rigid body then 
equation (1) takes on the following form .   

  / / /
1 1
2 2G O G O GT mv v I                                                                                       (1a).  

The expression   /GI  is to be interpreted as the product of a scalar 3x3 matrix, /GI , with a 

scalar, 3 element column vector 
x

y

z

 
 

  
 
 



 



, where the entries are treated as scalars. The result 

of this matrix product is a column vector in which the elements are the three vector components 
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of the angular momentum vector,    / /

ˆ
ˆ

ˆ

x

G G y

z

H i

I H H j

H k

 
 

   
 
 

  .  Even though no unit vectors were 

used in taking the matrix product in equation (1a), by definition the result of computing this 
matrix product is assigned unit vectors as shown in the expression for H/G.  This approach of 
using what may seem to be an arbitrary definition is to avoid having to engage in the use of the 
mathematics of tensor notation.   

Equation (1) makes use of vector dot products.  This is intentional. The expressions   

/ / /and G O G O Gv v H are intended to be interpreted as true dot products between vectors with 3  
components which include unit vectors, such as the expression for H/G given a few lines above, 

and where 

ˆ
ˆ

ˆ

x

y

z

i

j

k

 
 

  
 
 



 



 .  

Useful simplifications: 

When the mass moment of inertia matrix has been computed with respect to principal axes then 
it is a diagonal matrix and equation (1a) takes on a simpler form:

 
2 2 2

/ /
1 1
2 2G O G O xx x yy y zz zT mv v I I I                                                                             (1b) 

If the body rotates about a fixed axis passing through a point „A‟ then one may substitute the 
following formula:   

  / /
1 1
2 2A AT H I                                                                                                    (2) 

As with equation (1b), when the mass moment of inertia matrix I/A has been computed with 
respect to principal axes, then it will be a diagonal matrix and equation (2) takes on the simpler 
form given in equation (2a) 

2 2 2
/ / /

1
2 xx A x yy A y zz A zT I I I                                                                                               (2a) 

In both equations (2) and (2a) the kinetic energy associated with translation has been absorbed 
into the computation using the mass moment of inertia matrix with respect to „A‟.   

An even further simplification—single axis rotation about a principle axis:                     
When the rotation is about a single fixed axis passing through a point „A‟ and that axis is a 
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principal axis then equations (2) and (2a) take on an especially simple form.  
   2

/ /
1 1  where i is the axis of rotation.
2 2A ii A iT I I                                         (2b) 

 

 

Planar motion: 

When the motion of a rigid body is confined to translation in a plane, for example the x-y plane, 
and allowed to rotate only about a principal axis, which is perpendicular to that plane, the 
resulting motion is defined as planar motion.  In such cases the axis of rotation is allowed to 
move, as when a wheel rolls down a hill.  For such problems the kinetic energy expression 
becomes:  

2
/ / /

1 1
2 2G O G O ii G iT mv v I                                                                                                     (3) 

When the plane is the x-y plane then the axis „i‟ in equation (3) is the z axis.   

Potential energy computations for mechanical systems: 

Potential energy V is defined as the negative of the work done by the external conservative 
forces.   

conservativeV F dr  .  For purely mechanical systems the only potential(conservative) forces 

are due to gravity and springs.  Once one knows the standard ways of computing potential 
energy for gravity and springs the work is very straightforward.  However, clever choices in 
picking the reference potential energy levels and coordinate system can make a big difference in 
the ease of implementation of the equations of motion that result.  This brief write-up introduces 
that discussion in one way.  

When both gravity and springs are present in a problem, the system will sometimes have a stable, 
non-moving, static equilibrium state.  Very often this is the result of a static deflection of the 
spring which produces a force which balances the weight of the object.  An example is a mass 
hanging from a spring.  The dynamic motions of such systems often occur around the static 
equilibrium position of the system.  It is often advantageous to choose coordinates such that they 
are zero when in the static equilibrium position.  Computation of the potential energy function, 
V, when using coordinates measured with respect to static equilibrium positions requires some 
care, but pays off later on.  This will be done by example in this problem set.    
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