
2.003 Engineering Dynamics 

Problem Set 3--solutions 

 
Problem 1:    

a) A satellite is circling the earth. It spins at a constant angular rate ˆ0.05(rads/s)k . Two 
sensitive science instruments, indicated by ‘P’ in the figure, are symmetrically attached at the 
ends of extendable booms. Initially the booms are 1.2m in radius. Once the satellite is 
deployed in orbit the booms extend radially by a variable length L.  As the booms are 
extended an internal mechanism is used to maintain the constant rotation rate of the satellite.  
The length L is varied from zero to 3 m. The maximum total acceleration to which the 
sensitive experiment modules may be subjected is 0.011 m/s2.  Determine the maximum 
allowable boom extension rate.  

   

 

 

The solution to this problem requires an application of 
Euler’s law governing the rotational dynamics of rigid 
bodies, as shown below, where C is the center of mass of 
the rigid body and O is the origin of the inertial reference 
frame used in the problem.  In this problem the choice of 
the placement of the inertial frame requires careful 
consideration and will be addressed shortly.  B in the 
equation is the point with respect to which the angular 
momentum is defined. That will turn out to be the center 

of mass in this problem. In many problems the second term in Euler’s equation is zero. An 
common example is when B is fixed in the inertial frame, then vB/O=0.  
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In this problem the point B is at the center of mass of the satellite.  Therefore the second term in 
the equation above is zero, because the cross product term is always zero when the angular 
momentum is computed with respect to the center of mass.  This is because the direction of the 
velocity of the center of mass is the same as the direction of the linear momentum. Noting that 
point B and the center of mass are the same, the equation above simplifies to: 
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The equation is equal to zero because there are no external torques applied to the satellite.  If the 
time rate of change of the angular momentum of the satellite with respect to the center of mass is 
zero then the angular momentum with respect to the center of mass must be a constant.   

The problem statement specifies that the angular rotation rate of the instrument packages is a 
constant. As the booms are extended, the contribution from the booms and the instrument 
packages to the mass moment of inertia of the satellite with respect to an axis of rotation passing 
through the center of mass must increase. At constant rotation rate this would ordinarily result in 
an increase in the total angular momentum.  

In order for the angular momentum of the whole satellite to remain constant there must be some 
device inside of the satellite whose change in angular momentum is equal and opposite to that 
caused by the extension of the instrument packages. The result is that the total angular 
momentum of the satellite remains constant. An example device would be a rotor which spins in 
the opposite direction to the rotation rate of the instrument packages. As the instrument packages 
are extended the rotation rate of the internal rotor increases in the direction opposite to the 
rotation rate of the instrument packages.  The total angular momentum of the internal rotor plus 
the rest of the satellite remains constant. 

It remains to find the maximum velocity of the extension of the instrument package arms such 
that the total acceleration does not exceed the limit given, 0.011 m/s2.  Kinematic expressions are 
needed to express the velocity and the acceleration of the instrument packages with respect to the 
center of mass of the satellite.   

The problem statement as given is somewhat ambiguous.  It does not make clear whether or not 
the acceleration of satellite due to its travel in earth orbit is to be considered.  In order for the 
satellite to stay in orbit, the weight of the satellite must be exactly equal to the mass of the 
satellite times the centripetal acceleration due to circular motion about the earth.  At an altitude 
of 100 miles in a low earth orbit the centripetal acceleration is approximately 0.95G=9.4m/s2. 
This is far in excess of the 0.011 m/s2 allowed in the problem statement.  Why is it meaningful to 
focus on this small quantity rather than the much larger acceleration resulting from the orbital 
motion?  

The reason that the acceleration due to orbital motion may be ignored is because it results in no 
local stresses on the instrument package. The mass times the centripetal acceleration of the 
instrument package as it circles the earth is exactly equal to the gravitational force of the earth on 
instrument package.  A passenger on the satellite would feel weightless.  In this case the orbital 
motion leads to no stresses on the instrument package.  However, the acceleration of the package 
relative to the center of mass of the satellite will lead to local forces and stresses necessary to 
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make the package move in the way specified.   

Thus the velocity and acceleration of the instrument package may be computed with respect to 
an inertial frame located at the center of mass, but not rotating with the satellite.  The inertial 
frame Oxyz is shown in the figure below. The velocity and the acceleration may be computed 
using either polar coordinates or the full vector expression for velocity and acceleration.  These 
expressions are given below for polar coordinates, where the vector 1 1̂r rr is the position vector 

of one instrument package with respect to the center of mass.  The unit vector 1̂r  is aligned with 
the boom supporting one of the packages, as shown in the figure.  
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The computed acceleration has two terms. One depends on the radius r and the other on the 
velocity r .  The acceleration is greatest when both are maximum. The first term is the centripetal 
acceleration due to the rotation of the instrument package about the center of mass. The second 
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term is the Coriolis acceleration, which results in an increase in the angular momentum of the 
instrument package as the boom extends. The magnitude of the centripetal acceleration with 
respect to the center of mass of the satellite is maximum when the arm is at the maximum 
extension of 4.2 m. The two terms are orthogonal to one another and their magnitude is simply 
the square root of the sum of the squares of the two parts.  The maximum acceleration magnitude 
will be achieved at maximum radius.  Equation (a) above was solved for the allowable rate of 
extension of 0.033m/s.  This is the end of the simplified problem, in which the orbital motion 
was ignore.  For the curious, this addendum to the solution of problem 1 addresses how one 
would include the orbital motion.  

If one wished to compute the total acceleration of the instrument package including the effects of 
orbital motion, then it would be best to employ the full 3D vector equation for acceleration of a 
point in a translating and rotating reference frame as given by the following expression.  Note 
that the Oxyz frame would be an approximate inertial frame at the center of the earth.  The Ax1y1z1 

frame is fixed to the satellite at its center of mass.  The point B would be at the location of the 
instrument package.  The first term aA/O would be the centripetal acceleration of the satellite due 
to the orbital motion.  In this problem, the 2nd and 3rd terms are zero.  The 4th and 5th terms are 
those already computed that account for the centripetal and coriolis accelerations with respect to  
the center of mass of the satellite.  
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

 

 

Problem 2:    

The winch, shown in the figure, delivers a horizontal towing force, T(t), to its cable at D. The 
force varies with time as shown in the graph. Determine the speed of the 80-kg mass when ‘t’ 
reaches 24 s. Assume that at t=0, the mass has zero velocity.  Also assume that the pulleys and 
cables are massless.   
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The solution to this problem requires finding an expression for the acceleration of the hanging 
mass. This is done by direct application of free body diagrams and Newton's second law. Use the 

fact that that the tension on a cable passing around a 
massless pulley remains constant, as can be proven by 
summing the torques about the axle and requiring the sum 
be zero, because the mass moment of inertia of the pulley 
is zero.  

A free body diagram of system consisting of the mass and 
the pulley to which it is connected is shown.  Application 
of Newton’s 2nd law reveals that: 

  

Since the tension as a function of time is known this 
equation may be solved for the acceleration and then 

integrated to give the velocity when t=24s.   
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Integrating over the two segments of time reveals the following: 
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Problem 3:    

A 75-kg girl leaps from cart A with a horizontal velocity of 3 m/s measured relative to cart A. 
Carts A and B have the same mass of 50 kg and are originally at rest.  

a. Determine the velocity of cart A just after she jumps.  
b. If she then lands on cart B and comes to a stop relative to cart B, determine the 

velocity of cart B just after she lands on it. 

y

XO   

 
  

Solution:   
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The solution to this problem is based on the conservation of linear momentum in the horizontal 
direction. Assuming no external friction forces in the horizontal direction act on either cart, then 
the total linear momentum of the girl and the cart is conserved in the horizontal direction.  
 
The carts are designated A and B and the girl is designated C. Prior to jumping from cart A the 
initial linear momentum of the system is zero.  After jumping the girl and cart A each have 
nonzero velocity. The total momentum of the system may be written as: 
State 1:  Before jumping, Ptotal=0. 
 
State 2:  After leaping from cart A: 
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State 3:  After the girl lands on cart B, the total system momentum remains zero, as expressed in 
the next equation: 
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Problem 4:    

A ramp rolls without friction on a horizontal floor.  It has a weight of 120 lb. If an 80-lb crate is 
released from rest at point A near the top of the ramp, determine the distance the ramp moves 
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with respect to the floor when the crate slides 15 ft down the ramp to point B.  

 

                                    

Solution: 

In the absence of friction between the ramp and the floor in the X direction the system consisting 
of the ramp and box obeys conservation of linear momentum. This will be true whether or not 
there is friction between the box and the ramp, because that friction is an internal force of the 
whole system which includes the box and the ramp. If the box and the ramp are initially at rest 
then the velocity of the center of mass of the system is zero. In the absence of external forces in 
the x direction the center of mass of the system must not move in the X direction. As the box 
slides a component of its motion is in the minus X direction. At the same time the ramp will 
move in the positive X direction so as to keep the center of mass motionless.  The box and ramp 
are shown in the initial and final positions in the figure below.    

X
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B
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Let Xb1 and Xb2 be the initial and final X coordinates of the center of mass of the box.  Let Xr1 
and Xr2 be the initial and final X coordinates of the position center of mass of the ramp.  Let XC 
be the coordinate of the center of mass of the box and ramp treated as a system.  Using the 
definition of the center of mass of the system in the X direction: 

 

  1 1 2 2
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b r C b b r r b b r r

b b b r r r
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Let the initial distance between the centers of mass of the box and the ramp be given by L.  

After the box slides down the ramp this distance changes by 12 feet, which is the horizontal 

component of the 15 foot displacement down the ramp.  Expressed mathematically this 

becomes: 
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Substituting (e) into (a) and solving for 2 1( )r rX X yields: 
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200

b
r r

b r
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
  

The ramp moves 4.8 feet to the right, while the center of mass of the system does not move at all.  

Problem 5   

A massless arm rotates about a vertical axis.  At the outer end of the arm is a cart. For the 
purpose of this problem consider the cart to be a concentrated particle. A moment(torque), M(t) 
is applied to the arm at the axis of rotation, given by 2( ) 30 ( )M t t N m  .  In addition an 
external force is applied to the mass in the tangential direction.  The force is given by 

( ) 15 ( )F t t N .  The force and moment are applied beginning at t=0. 

(a) Find an expression for the angular momentum of the cart with respect to the point on the axis 
of rotation where the rod attaches to the pivot.  

(b) At t= 5 seconds the external driving forces and moments are turned off, leaving the arm and 
cart to coast at a constant rotation rate. Find an expression for P , the linear momentum of the 
cart after the force and moment are turned off.  

(c) Compute the time derivative of P   with respect to the Oxyz inertial frame. By Newton's 2nd 
law the result must be the force applied to the mass. Explain the physical meaning of this force.  
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Solution: 

a) The solution is based on the concept of impulse of angular momentum.  It is appropriate 
to begin with Euler’s law for the angular momentum of a single particle as given below, 
where Oxyz refers to a fixed inertial frame.  The Bx1y1z1 frame is attached to the rotating 
system, such that the x1 axis is along the rod.  The origins of both reference frames, O 
and B, are both at the location of the fixed axis of rotation, as shown in the figure.  The 
mass is located at point C.  
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Angular momentum is indicated here by a lower case ‘h’ to indicate it is for a single particle.  

Upper case H will be used to indicate the angular momentum for extended rigid bodies. The left 

hand side of this expression is the sum of the external torques with respect to point B.  These 

torques result from the applied external force, F(t), and moment, M(t), as shown below: 
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These external torques are only in the z direction.  This is a fixed axis planar motion problem.  
The angular momentum of the system and its derivative are both in the z direction, perpendicular 
to the plane of the motion.  The change in the total angular momentum of the system may be 
obtained by integrating the applied torques with respect to time to obtain the impulse of angular 
momentum.  
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b) For t greater than 5 seconds the linear momentum is given by 

/ 1 1 1
ˆ ˆ ˆ ˆ( ) 359 ( / )C OP mv m k Li mL j j N m s        In this expression for the linear 

momentum, all parameters are constant except for the unit vector  1̂j .  It changes direction 
with time.  

c) The time derivative of the linear momentum is given by 
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This is the force that the arm must exert on the cart to make the cart move at constant speed in a 
circle.  It is the mass times the centripetal acceleration of the cart.  

Newton’s second law works very well in this unusual situation.  

 

Problem 6   

A 3 kg monkey runs up the shaft shown in the figure. The shaft rotates at a constant rate of 2.0 
rad/s. The speed of the monkey running along the shaft is 1.5 m/s.  

(a) Find expressions for the velocity and acceleration of the monkey with respect to a fixed 
inertial frame, Oxyz, located at the point the inclined shaft connects to the vertical rotating shaft.  

(b) Treating the monkey as a simple particle, find an expression for the angular momentum of 
the monkey with respect to the origin at O. What is the direction of the angular momentum 
vector? Draw an arrow that begins at O to represent the angular momentum vector, h/O.  

(c)Compute the time rate of change of h/O with respect to the Oxyz frame. It will have three 
vector components or terms. Give a physical interpretation to the meaning of each term.  
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Solution: 

a).  The first requirement is to find an expression for the velocity and acceleration of the monkey 
expressed in the Oxyz frame.  Let the position of the monkey be designated by point B.   

Cylindrical coordinates 1( , , )r z   are convenient in this problem. The position vector for the 

monkey, /B O , has components in the 1
ˆˆ  and kr  directions such that / 1
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To find the acceleration of the monkey, apply the following expression. 
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There are two terms in the acceleration felt by the monkey.  The first is the centripetal 
acceleration which is associated with circular motion.  The second is the coriolis acceleration 
necessary to provide the increase in the angular momentum of the monkey as he moves further 
from O.   

Again applying the conversion from polar coordinate unit vectors to Cartesian unit vectors leads 
to the following expressions in the inertial frame.  As we shall see in parts b and c it is much 
easier to do the vector math in terms of the rotating unit vectors.  

2 2
/ 1 1̂

ˆ ˆ ˆ ˆˆ 2 (cos( ) sin( ) ) 2 ( sin( ) cos( ) )P Oa r r r r t i t j r t i t j                  

b). Next an expression is required for the angular momentum of the monkey.  In this problem 
treat the monkey as a simple particle.  Angular momentum with respect to the origin, O, is given 
by: 
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the position vector to the monkey and the 
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speed of the monkey
relative to the arm are in the same direction.  Therefore,
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We could have anticipated that the direction that the angular momentum vector points must be 
perpendicular to both / / and .B O OP  This is because they are the two terms in the cross product 
that define h/O.  The direction of h/O is perpendicular to the arm that the monkey is climbing, as 
in the sketch below.  

This is a remarkable result in that unlike most problems you have encountered before in more 
introductory subjects on mechanics, the angular momentum vector and the rotation rate vector 
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are not parallel. This has significant physical meaning.  Any time a rigid body is rotating about a 
fixed axis and the computed angular momentum vector does not point in the same direction as 
the rotation rate vector, the rotating body has a dynamic imbalance. The body will require the 
application of additional external moments to hold it in place as it spins.  These additional 
torques usually do no work but they are necessary to keep the body from collapsing as it spins.   

They do produce bending moments in the structure and can lead to failure of the device if they 
are too large.  

   

c).  The final part of this problem is to compute the time rate of change of the angular 
momentum, h/O.  It has already been stated that some unexpected moments are required to 
restrain the body as it rotates.  Computing the time rate of change of the momentum will reveal 
exactly what these unknown moments are.  From part b) the angular momentum is given by 

2
/ 1

ˆ ˆ
Oh mr k mzr r     

We need to take its derivative.  This vector changes direction with time because the unit vector 1̂r  

changes direction with time.  There is a general formula for the time derivative of a rotating 
vector P: 

w/o rotation

dP P
P

dt t






 
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 

 

The first term is the time rate of change of the vector, ignoring the effect of the rotation of the 
vector.  The second term accounts for the effect of rotation.  For example, in part a) of this 
problem an expression was found for the velocity of the monkey as the time derivative of the 
rotating position vector /B O .  The first term above would yield the velocity of the monkey 
relative to the arm.  The second term gives the contribution to the velocity of the monkey due 
only to the rotation.  Applying this formula to the angular momentum expression above yields:  
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Euler’s law for angular momentum says that for bodies rotating about fixed axes, the time rate of 
change of the angular momentum must be equal to the sum of all of the external torques acting 
on the body.  The above result tells us that there must be three torque components acting on this 
object at point O, one in each of the unit vector directions.   

Are these real torques and do they have real physical meanings.  For certain they do.  The first 
term on the right hand side is a torque about the axis of rotation.  This is the torque required to 
increase the angular momentum of the monkey as it moves its mass further away from the axis of 
rotation. This term does work, which results in an increase in the kinetic energy of the monkey.    

The third term is the torque required to counter the moment created by the centrifugal force of 
the mass of the monkey acting on a moment arm z in length.  This term leads to stresses but does 
not work.  

The second term accounts for the moment created by the coriolis force which would lead to 
twisting of the arm about the r1 axis.  This moment causes stresses as well but does no work.     
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