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November 16, 2007 

1.0 Where are we in the course? 

Thus far we have completed Kinematics and Kinetics of single particles, systems of parti­
cles and rigid bodies respectively. We are now well into the Lagrange portion of the class. 
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2.0 Generalized Coordinates 

The generalized coordinates of a mechanical system are the minimal group of parameters 
which can completely and unambiguously define the configuration of that system. Some 
generalized coordinates are more “natural” than others, but there might be many ways to 
define them for any one system. The number of generalized coordinates equals the number 
of degrees of freedom of the system as long as the system is holonomic. We only study 
holonomic systems in this class. 

Consider a system consisting of N rigid bodies in 2D space. Each rigid body has 3 degrees 
of freedom: two translational and one rotational. The N-body system has 3n degrees of 
freedom. Now let’s say that there are k kinematic constraints which can be expressed as 
algebraic equations. Then the system has d = 3N k  degrees of freedom.– 

The term “holonomic” refers to the fact that the kinematic constraints must be expressible 
as algebraic equalities. Some kinematic constraints can only be expressed as inequalities 
or differential equations. Such systems are called non-holonomic constraints. We will not 
consider non-holonomic systems in this class— if you are interested in such systems, you 
can talk to me about them outside class. 

3.0 Why Lagrange? 

There are several reasons why the Lagrange Approach is important. 

1. The Lagrange Approach automatically yields as many equations as there are degrees of 
freedom. It has the convenience of energy methods, but whereas energy conservation 
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only yields just one equation, which isn’t enough for a multi-degree-of-freedom sys­
tem, Lagrange yields as many equations as you need. 

2. The Lagrange equations naturally use the generalized coordinates of the system. By 
contrast, Newton’s Equations are essentially Cartesian. You end up having to convert 
everything into Cartesian components of acceleration and Cartesian components of 
forces to use Newton’s Equation. Lagrange bypasses that conversion. 

3. The Lagrange approach naturally eliminates non-contributing forces. You could do the 
same with the direct (Newtonian) approach, but your ability to minimize the number of 
variables depends very much on your skill; Lagrange takes care of it for you automati­
cally because the generalized forces only include force components in directions of 
admissible motion. 

4.0 The Lagrange Equations 

For a d-dof (degree-of-freedom) system with generalized coordinates qj ’s, it is possible 

to formulate the Lagrangian L = T – V where T is the kinetic energy and V is the poten­
tial energy. The Lagrangian is a function of generalized coordinates qj ’s and generalized 

· velocities qj ’s: 

· · L q1, , q1, …q · ) .1 (EQ 1) L = ( …qj…qd …qj d 

where d is the number of degrees of freedom. 

The Lagrange Equations are then: 

d
d
t 
⎛
⎝
∂
∂ 
L
q · j 
⎞
⎠ – ∂

∂
L
qj 

= Qj ,  (EQ 2)  

where Qj ’s are the external generalized forces. Since j goes from 1 to d, Lagrange gives us 
d equations of motion. 

But what are generalized forces? We derived them in class. Read on. 

4.1 Generalized Forces 

The generalized force Qj is defined below: 

1. There are some situations in which the Lagrangian is explicitly a function of time. Such systems are 
called rheonomic systems. We will not explore the implications in this course. 
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FIGURE 1. A bead on a wire 

Qj = Fi 

i = 1 

N 
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⎝ ⎠ 
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⎛ ⎞ 

(EQ 3) 

where Fi is the force at point i and ri is the position vector of point i. The index j corre­
sponds to generalized coordinates. 

4.2 The Intuition 

So why does the Lagrange formulation work? The insight is simple. The Lagrange formu­
lation only considers admissible motions. 

4.2.1 The Problem with the Newtonian Approach 

Consider a bead sliding without friction on a curved wire as shown in Figure 2. Clearly the 
bead can only move along the wire, which can be approximated locally as a direction tan­
gential to the wire. Now, the Cartesian coordinates of the bead would be x and y. However, 
these coordinates are redundant. We can only eliminate the redundancy by introducing a 
geometric constrain between x and y of the form Constraint x y( , ) = 0 .1 For example, if 

the wire is in the form of a circle of radius R, the constraint will be x 2 + y 2 – R2 = 0 . No 

combination of Δx and Δy  is legal if it does not satisfy x 2 + y 2 – R2 = 0 . 

In the direct, or Newtonian approach, we waste a lot of time considering x and y motions 
as if the bead could get to any x and y (which it can’t), postulating reaction forces (which 
are actually irrelevant) and then solving for these reaction forces and motions such that the 
Δx and Δy  satisfy the kinematic constraint (which is a waste of time). The problem, as 

1. We will assume that this is an algebraic. If it is an inequality constraint or an unintegrable differential 
equation, we need more machinery which we will not cover in this course. 
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2 

Let’s say you try 
to move in this 
direction. 

5 

A reaction force 
keeps the bead on 
the wire. 

3 

This reaction force is irrelevant 
because it adapts to counter any 
applied force, and it doesn’t do work. 

4 

So why even consider impossible 
motions and the forces we need to 
make them vanish? They don’t impact 
the dynamics of the system. 

So if we only consider motions which are in admissible directions and the forces in these 
directions, we can solve the kinetics of the problem. Hello Lagrange! 

FIGURE 2. Admissible motions and the non-contributing forces that enforce them 

shown in Figure 2, is that we do everything explicitly and in the process, we end up solv­
ing for a number of extra variables like reaction forces and inadmissible motions which 
end up being irrelevant to the actual dynamics of the system. Essentially, pushing at an 
immovable object causes to motion. 

4.2.2 Admissible Motions 

Here’s the rub. The use of a good set of generalized coordinates eliminates this problem 
because generalized coordinates implicitly capture admissible motions. For example, if 
our wire is in the shape of a circular loop, an appropriate generalized coordinate is the 
angle of bead on the wire loop as shown in Figure 3 (a). If our wire were a cosine shape, it 
would look like Figure 3 (b) (I will concentrate on the circle in these notes, and leave it to 
you to work the math out for the sinusoid.) Now, consider the position vector r written as a 
function of q for the circular loop: 

r q = (Rcosq) + (R sinq)a2 .( )  a1 

q 

q 

FIGURE 3. Different wire shapes and relevant generalized coordinates 

a) A circular loop b) A sinusoidal wire 
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A∂rNow consider the expression 
∂q . (We were sloppy about specifying the frame for the 

derivative in the past, and we will omit it in the future under the assumption that when not 
stated, the frame of reference for a derivative is the inertial frame A.) Let’s compute this 
expression: 

∂r 
∂q = – (Rsinq)a1 + (R cosq)a2 . 

Guess what, this vector is tangential to the circle and instantaneously captures the admissi­
ble motion of the bead. A small variation of q, δq, results in a δr given by: 

δr = ∂
∂
r 
q δq .  (EQ 4)  

δr is an admissible motion for the bead. It captures the kinematic constraint. In general, in 
a d-degree-of-freedom system with generalized coordinates q1, …, qd , the admissible 

motions at a point i with position vector ri are given by: 

d 

δri = ∑ 
∂
∂
r
q
i 

j 
δqj .  (EQ 5)  

j = 1 

Note that the symbol δ in front of a variable emphasizes that the motion is an implicitly 
admissible motion. The d-dimensional version is actually a d-dimensional tangent space 
just like in a 1-dof case. 

4.2.3 f = ma  Written as Components in Admissible Directions 

If you applied a force F on the bead shown in Figure 1, the only component which is rele­
vant, assuming the wire is rigid, is the component of the force along the admissible direc­

tion. For the bead, this is given by ∂
∂
r 
q . So the only force component we need to worry 

about is: 

∂rF •
∂q .  (EQ 6)  

All other forces are perpendicular to the motion and don’t do any work! Of course, ∂
∂
r 
q 

isn’t a unit vector, and its dimensions are those of a length, but don’t worry about that for a 
moment. What we have just derived is the generalized force for a 1-dof system. 
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Newton’s Law says F = ma . We have just accounted for the LHS along the admissible 
direction. Similarly, the only acceleration component we need to worry about is the one in 
an admissible direction, and the RHS of Newton’s Equation of motion can be written as: 

∂r··mr •	 (EQ 7)
∂q 

when we recognize that a = r ·· . 

So taking the components of Newton’s Laws in the admissible direction only, we get: 

F • 
∂
∂ 
r 
q = mr ·· • 

∂
∂ 
r 
q .	 (EQ 8 ) 

or, looking at work, we get: 

∂r ∂rF • δq = mr ·· • δq .	 (EQ 9 )
∂q ∂q 

Look familiar? This is how we started our derivation of Lagrange’s Equations. This leads 
to the 1-dof Lagrangian Equation. The LHS is Q, the generalized force. Essentially, the 
RHS of Equation 8 reduces to: 

d ⎛ ⎞∂L ∂LQ	 = ⎝ ⎠∂q – 
∂q . (EQ 10)

dt · 

Look up the derivation from class to see why. You can extend this reasoning to multi-dof 
systems and get the general Lagrangian Equation: 

d	 ∂L ∂L⎛ ⎞ – = .	 (EQ 1 1)·dt⎝∂qj⎠ ∂qj 
Qj 

4.2.4 Generalized Forces Again 

So the key matter regarding generalized forces is this: 

•	 Forces of constraint which do not do work can be ignored because they will always 
be perpendicular to admissible directions. Examples include the internal forces in a 
rigid body, the forces of reaction in friction-less sliding, and so on. 

•	 Forces which derive from a potential function like gravity or a spring can be consid­
ered in potential energy, V. They too can be ignored when computing generalized 
forces. 

•	 Internal forces in rigid bodies do not contribute. 

•	 Forces in pure rolling don’t contribute. 
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•	 Forces which are none of the above need to be called out and used in Formula 3. We 
will call such forces contributing forces. Examples include dissipative forces from 
dashpots, externally applied forces and so on. You can’t go wrong including a force 
in this category instead of one of those above because they will vanish or be 
accounted for appropriately here. 

5.0  Using Lagrange’s Equations 

The steps in computing the equations of motion using Lagrange’s method are below. 

Start with the LHS of Equation 11: 

1. Identify the generalized coordinates. Make sure that you have just as many as there 
are degrees-of-freedom. 

2. Compute the kinetic energy T as a function of qj ‘s and q · j ‘s. 

3. Compute the potential energy V as a function of qj ‘s and q · j ‘s. Clearly mark out the 
forces which you will call out as potential and forces which you will call out as 
external 

4. Compute L = T – V , which will obviously be a function of qj ‘s and q · j ‘s. 

5. Compute d ⎛  ⎞  ∂L and ∂L and you have the LHS for each j.
dt⎝∂q · j⎠ ∂qj 

Now the RHS of Equation 11: 

1. Identify all contributing forces. 

2. Number them as i = 1 2  …n . Call the forces F1, F2,...Fn., ,  

3. Identify the precise points where the forces are applied on the system, and identify 
r2 rj must be athe position vectors r1, , …, rn  respectively for all these points. Each 

function of qj ‘s. 

n 
⎛ ⎞  

4. For each j, compute the generalized force using Equation 3: Qj = ∑ Fi • ⎜∂
∂r

q
i 

j 
⎟ . 

⎝ ⎠  
i = 1 

Now equate the LHS to RHS for each j. 

-------------------------------------------------Done--------------------------------------------------­
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