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1.0  What is “Dynamics?” 

The goal of the field of dynamics is to understand how mechanical systems move under 
the effect of forces. There are 3 components to the study of dynamics: 

•	 Kinematics deals with the motions of bodies. Kinematics has to do with geometry and 
physical constraints. 

•	 Kinetics deals with the evolution of this motion under the effect of forces. Classical 
Dynamics invoke Newton’s laws. 

•	 Constitutive relationships are the relationships which capture the effects of springs, 
gravitation, electromagnetism, etc. 

By combining kinematic, kinetic and constitutive relationships, it is possible to generate a 
complete set of equations collectively called the equations of motion. Solving these equa­
tions of motion gives us the motion of the system. 

2.0  How this Course is Laid Out 

System Kinematics Kinetics & Constitutive 

Particle 

System of particles 

Rigid Bodies 

Lagrangian formulation 

Oscillations 

3.0  Some Basics on Frames and Derivatives of Vectors 

Kinematics is all about reference frames, vectors, differentiation, constraints and coordi­
nates. Later, we will use generalized coordinates and constraints, but not yet. Right now, 
we describe some of the basic terms. 

1. A reference frame is a perspective from which a system is observed. The inertial frame 
of reference is a special frame which is important when we study kinetics, but has no 
relevance in kinematics per se. 

2. It is customary to attach three mutually perpendicular unit vectors to frames. You can 
give them names like: i, j, k or er, eθ, et or a1, a2, a3. 
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•	 By the way, we underline vectors on the blackboard, but using a bold symbol is the 
equivalent in type-set form. I will do both for some time, but please interpret bold 
as a vector if you see it by itself in future material. 

•	 Consider a situation in which you have defined a number of frames with unit vec­
tors in each. There is absolutely no reason why you couldn’t mix unit vectors. So, 
you could say: p = 3i + 7eθ 

You can differentiate vectors. However, differentiation of vectors has no meaning 
if you do not specify the frame with respect to which you are differentiating them. 

So it is important to say 
A d (3a + 7b) instead of just

d (3a + 7b)  if you are 
dt dt 

differentiating with respect to frame A. Often, this frame is not stated explicitly, 
and must be inferred from the context in which the expression is written. I prefer to 
spell it out explicitly. 

Here’s the secret: if a1, a2, a3 are the unit vectors associated with a frame A, then 

Ada1 
Ada2 

Ada3 = 0 ; = 0 ; = 0 . (EQ 1) 
dt dt dt 

In fact any vector which is merely translating in A, even if it is accelerating, has a zero 
derivative in A. A non-zero derivative occurs when the vector is stretching (in which case 
it is stretching in any frame) or rotating with respect to A. So in general we can say that: 

Adb ≠ 0 . 	(EQ 2)
dt 

In other words, if you want to differentiate an expression with vectors in it, it is 
best to express all vector terms in terms of a1, a2, a3 and then use relationships (I) 
above. That way, the taking of the derivative becomes trivially easy. 

•	 Furthermore for any two vectors a and b, 
A d	 A d A d(a b) = a • b + a • b•	 ( )  ( )

dt dt dt 
and 

A d	 A d A d× ( )  a × b .(a b) = a × b + ( )
dt dt dt 

4.0  Calculating Velocities and Accelerations of Given Points 

The last and the next homework are all about calculating velocities and accelerations of 
points defined in various frames of references. There are three approaches to this problem. 
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FIGURE 1. Spider on a Frisbee Problem 

θ 
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We will use the spider-on-the-frisbee problem used in class to illustrate the approaches. 
Spider photo courtesy of B. Smith. See Figure 1. 

4.1 	 The really tedious but conceptually simple approach 
(RTBCSA) 

1. Write down the position vector of the spider with respect to point O: rOS. = rOP+ rPQ. 
For convenience, you can write it in mixed form if you would like: 


rOS= ua1 + va2 + lb1


2. Now, say you want to calculate velocities and accelerations with respect to frame A. 
Then you are looking for: 

A S  A d 
rOS 

A dV = = (ua1 + va2 + lb1) . 	(EQ 3)
dt dt 

3. Because of Equations 1, this simplifies to: 

A S
V	 = a1 

A d ( )u + a2 

A d v + 
A d (lb1) .  (EQ 4)( )

dt dt dt 

The first two terms are done (!) but how do we take care of the third term? Here we use 
the trick alluded to earlier. We simply rewrite b1 in terms of a1 and a2: 

b1 = a1 cosθ + a2 sinθ . 	(EQ 5)

By the way, even though we don’t need it here, 

b2 = – a1 sin θ + a2 cosθ	 (EQ 6) 

Anyway, we can insert the expressions for b1 and b2 into Equation 4 above, take the 
derivative, and we are done! We get: 
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A S 	 · · · V = a1u · + a2v · – a1θ sinθ + a2θ co θ + l(a1 cosθ + a2 sin θ) . (EQ 7 ) 

4. The acceleration, AaS is simply the derivative of AVS done exactly as before. The good 
news is that since we have already down-converted everything to a1 and a2, the task is 
simple. When everything is done, we get: 

A S  A d A S 	 ·· ·· · · a = V = (u ··a1 + v ··a2) + (lcosθa1 + l sinθa2) + 2(– l · θ sinθa1 + l · θ cosθa2)
dt 

·· ·	· · 2 · 2
(– lθ sinθa1 + lθ cosθa2) + (– lθ cosθa1 – lθ sinθa2) . (EQ 8 ) 

Keep in mind that we can now rewrite the a1 and a2 in terms of b1 and b2 if we want to 
(it’s a free country, and the unit vectors need to be lined up with the frame of reference 
only during differentiation!). So we choose to rewrite some terms in the right-hand-side 
of Equation 8 above using the following reverse transformations: 

a1 = b1 co θ – b2 sinθ	 (EQ 9) 

a2 = b1 si θ + b2 cosθ	 (EQ 10) 

To get: 

A S 	 · θ · 2
a = (u ··a1 + v ··a2) + l ··b1 + 2l · b2 + lθ ··b2 – lθ b1 .	 (EQ 1 1) 

Let’s introduce ourselves our friends in Equation 11, many of whom crept out of the 
woodwork under the harsh light of unrelenting vector calculus (and to the surprise of 

Messrs. Euler, Coriolis and Centripetal1 during the course of history as you will have read 
in the text): 

A S 	 · θ · 2
a = (u ··a1 + v ··a2) + l ··b1 + 2l · b2 + lθ ··b2 – lθ b1 

point P with respect	 point S with respect effect ation. Basically effect 

to frame A.	 to frame B. In other the angular

words the view of a acceleration 

person sitting on the scaled by the

frisbee. lever arm l.


AaP: acceleration of BaS: acceleration of Coriolis Eulerian acceler- Centripetal 

1. That’s a joke. I’m sure you know that “centripetal” means “towards the center” in Latin. 
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4.2 	The Less Tedious Approach (LTA) 
Alternatively: Taking Derivatives with the Angular Velocity 

We now introduce the concept of an angular velocity. In 2D, if frame B is rotating with 
· respect to frame A at a rate θ  then we say that the angular velocity of B with respect to A 

A B  A B  · is ω  and ω = θa3 = θ · b3 . Some key trivia about angular velocities: 

1. First, note that you don’t need the concept at all. As we have seen, we can calculate 
everything we want to from straight vector calculus. 

2. Angular velocities are convenient for two reasons: 

•	 First, they can be used to calculate derivatives more easily, as we will see shortly. 

•	 Second, motions of rigid bodies can be captured as translations in a certain direc­
tion and a rotation. All the points in rigid bodies travel together. So the angular 
velocity is useful to capture the motion of the entire rigid body. In fact a frame is a 
rigid body too, just a transparent, fictitious one. So angular velocities also capture 
the motions of frames of reference. 

•	 It might seem that angular velocities need to be defined about a certain point or 
axis. This is not the case. The text has a very nice explanation of why not. Every 
point on a frame or a rigid body has the exact same angular velocity, and there is 
not point that needs to be specified. 

•	 We will continue our development in 2D but all results will also apply “seam­
lessly” in 3D!! 

Now for the magic formula. In class I showed you that for any vector r which you might 
seek to take a derivative in frame of reference A, 

A Bdr dr A B  
= + ω × r . 	(EQ 12)

dt dt 

The implication is very simple. As you know from the previous section and from problems 
in PSet 1, you can always take derivatives by down-converting everything to the unit vec­
tors attached to the frame of reference (say A) with respect to which you seek to take 
derivatives. however, this can be tedious if some vectors are better specified in some inter­
mediate frame, say B. Wouldn’t it be wonderful if you could simply do all your business in 
the more convenient frame B and just throw in an “adjustment term” to convert stuff to 
frame A? Well, look no further than Equation 12. Basically, Equation 12 lets you do your 

A B
business in a frame attached to the frisbee, and to simply add in a ω × r  term to take 
care of the fact that you wanted to compute a derivative in frame A. How do we use it? 

Consider the frisbee problem again, and look at Equation 4, reproduced below: 

V = a1 ( ) + a2 ( )A S A d A d A d (lb1)u v + 
dt dt dt 
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Earlier we were compelled to “down-convert”1 that third term in terms of a1 and a2. That 
created a lot of math that it would be convenient to avoid. So using Formula 12 we can 
instead calculate it as: 

A d B d A B(lb1) = (lb1) + ω × lb1 . dt dt 

A B  · Remember that we defined ω = θa3 = θ · b3 , so the equation above simplifies to: 

A d (lb1) = l · b1 + lθ · b2 .  (EQ 13)
dt 

We can insert that back into Equation 4 and get Equation 7 without all the intermediate 
drama, and in a much more convenient form: 

A S  A d ( )  a2 

A d ( ) + l + lθ · b2 .  (EQ 14)V = a1 u + v · b1dt dt 

Voila, eh?!! Now to get AaS we can calculate the second derivative; and we use our magic 
formula again every time we are confronted with a a b1 or a b2 in the term being differen­
tiated with respect to frame of reference A. So in other words, our magic formula, Formula 
12, is a very simple tool of convenience. 

4.3  A Really Simple Formulaic Approach (RSFA) 

We have solved the spider-on-the-frisbee problem using two approaches now. It turns out 
that the problem has a certain attributes that repeat in a lot of other problems: 

1. There are many situations in which a rigid body travels through space either in a ballis­
tic trajectory or under its own power or attached to a mechanism or system by a link or 
a cable. The rigid body in these situations in moving with respect to a frame A. Let’s 
say that Point O is fixed in Frame A. Let’s assume that the rigid body bas frame B 
attached to it. 

2. In many cases, there is a point on rigid body by, Point P, whose position is known as a 

function of time. In other words, r 
OP

( )t  is known, from which we can calculate AVP 

and AaP. For example, we might know the exact position of a reference point on a satel­
lite, or the exact location of a navigation unit on a fighter plane, or the exact location of 
a joint on a link in a robotic arm, or a GPS unit attached to a giant peanut hurtling 
through space. This is shown in Figure 2. 

1. The term “down-convert” is not technical. I am using it informally. 
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FIGURE 2. Peanut hurtling through space 
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3. Assume that the angular velocity of B in A is also known, and we call it	 ω . By the 

way, we can define the angular acceleration of a rigid body B with respect to a frame A 
as: 

αA B  
= .

dt 

A d ωA B  

A B·This is simply a definition. We might just as well have called it ω , but we prefer 
A Bα	 . 

4. Now consider another point S moving with respect to rigid body B. Say an is astronaut 
walking on the International Space Station as it hurtles through space. Let us say that 
you are an observer sitting immobile on rigid body B (the Space Station). In your frame 

of reference, the point S has a velocity and an acceleration respectively BVS and BaS . 

5. Key objective: You want to know what the velocity and acceleration of point S with 

respect to frame A, AVS and AaS, are. Look at this carefully: we are given BVS and BaS 

and we want AVS and AaS . 

6. It turns out that AVS, by a process very similar to our solving the frisbee problem, 
comes to: 

A S  A P B S A B  PSV = V + V + ω × r . 	(EQ 15)

Judicious use of this formula saves you a bunch of differentiation. 

7. It turns out that the expression for AaS can be derived rather trivially, by simply apply­
ing magic formula 12 to Equation 15 to get: 

A S  A P B S A B  PS A B  A B  PS A B B S  
a	 = a + a + α × r + ω × ( ω × r ) + 2 ω × V .  (EQ 16)

We refer to this as the super-magic formula. Judicious use of this formula saves you a 
bunch of differentiation for a second time. Using this formula, our frisbee problem can 
Kinematics	 September 12, 2007 

y Sarma, Nicholas Makris, Yahya Modarres-Sadeghi, and Peter So, course materials for 2.003J/1.053J

ontrol I, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. 


Downloaded on [DD Month YYYY].


7 



 

Cite as: Sanja
Dynamics and 
be solved almost trivially. Hurray. Oh, and the last three terms are respectively the 
Eulerian Acceleration, the Centripetal Acceleration and the Coriolis Acceleration. 

Note though that when you use the super-magic formula, you must be very careful in 
specification of frames of reference. 

4.4  Summary 

There are several key points here. 

1. I have shown you how to calculate velocities and accelerations in moving systems 
using frames of reference. 

2. You can build a very complex system with parts moving on parts moving on parts, and 
calculate the velocities and accelerations of all the parts by going through this process 
repetitively. These are called intermediate frames. The angular velocities have a won­
derful property: 

A B  A P P Q  U V V Bω	 = ω + ω + … + ω + ω .  (EQ 17)

In other words, angular velocities add over intermediate frames. Don’t worry, we won’t 
need Equation 19 in class. 

3. While this class is limited to 2D, the formulae extend seamlessly to 3D!! So what you 
have learnt in kinematics works well outside class. 

4. Connection to the Williams Text: Everything I have said maps directly to the Williams 
text. Only my notation is different. Specifically, 

•	 What we refer to as AVS, Professor Williams would refer to as VS, and similarly for 
acceleration. 

•	 What we refer to as BVS, Professor Williams would refer to as Vrel 
S, and similarly 

for acceleration. 
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