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Problem 6.1 : Dynamics of mass-spring-damper system 
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Problem 6.2 : Solver for mass-spring-damper system with Euler method 

First, 2nd order differential equation is split into two 1st order differential equations as did in 

Homework #3. 
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With Eq.(3), we also obtain the discrete version of above differential equations. 

Δ x  n t  x n,1 ← x  n t  & x n, 2 ← Δ


( ) ( ) ( )

( ) 1 ( ) ( ) 2 ( ) 

x n +1,1 = x n,1 + x n, 2 ×Δ  t 

( ) ( ) (4)x n +1, 2 = x n, 2 + a×Δ  t


whe e a = 
1 ( F0 sin (ω×(n t )) − b x n ( , 2 ) × ( ))
r Δ × − k x n ,1 
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The solver of mass-spring-damper system with Euler method is implemented as below. 

Explanation of each command line is included in the following codes. 

function O=MSDSE(m,b,k,F0,w,x0,v0) 

% 

% Solver for Mass-Sprring-Damper System with Euler Method 

% ----- Input argument -----

% m: mass for particle 

% b: damping coefficient 

% k: spring constant 

% F0: amplitude of external force 

% w: angular freuency of external force 

% x0: initial condition for the position x(0) 

% v0: initial condition for the velocity v(0) 

% ----- Output argument -----

% t: time series with given time step from ti to tf. 

% x: state variable matrix for corresponding time t matrix 

% Define time step in Euler method 

dt=0.1; 

% Make time series with given time step 

t=[0:dt:50]'; 

% Initialize output matrix 

% the 1st column: the position of the particle 

% the 2nd column: the veleocity of the particle 

x=zeros(length(t),2); 

% the 1st row has initial conditions 

x(1,:)=[x0 v0]; 

% Start the simulation with Euler method 

for i=1:length(t)-1 
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% Apply Euler method


% x(n+1)=x(n)*v(n)*dt


    x(i+1,1,1)=x(i,1)+x(i,2)*dt; 

% v(n+1)=v(n)*a(n)*dt


%where a(n)=1/m*(F0sin(wt)-bv(n)-kx(n))*dt


    x(i+1,2)=x(i,2)+(1/m)*(F0*sin(w*t(i))-b*x(i,2)-k*x(i,1))*dt; 

end 

% Extract only particle position trajectory 

O=[t,x(:,1)]; 

end 

Problem 6.3 : Solver for mass-spring-damper system with Runge-Kutta method 

Unlike Euler method, you don’t need to solve differential equation itself in MATLAB. (You can also 

make your own code for Runge-Kutta algorithm for yourself.) However, the subfunction should 

be needed to implement Runge-Kutta algorithm. (Single m-file can have several functions. The 

first one is the primary function, and others are subfunction.) Subfunction includes several 1st 

order differential equations by splitting higher order differential equation. In our case, two 1st 

order equations are used as described in problem 6.2. With this subfunction, the solver (either 

‘ode23’ or ‘ode45’) solves differential equations actually. The handler of function which 

has dynamic equation description, time span which the solver calculates between, and initial 

condition at the simulation starting time are at least specified as the input arguments when the 

solver runs. More detailed syntax description of either ‘ode23’ or ‘ode45’ is shown in 

MATLAB help. The solver of mass-spring-damper system with Runge-Kutta method is 

implemented as below. Explanation of each command line is included in the following codes. 

function O=MSDSRK(m,b,k,F0,w,x0,v0) 

% 

% Solver for Mass-Sprring-Damper System with Runge-Kutta Method 

% ----- Input argument -----

% m: mass for particle 

% b: damping coefficient 

% k: spring constant 

% F0: amplitude of external force 

% w: angular freuency of external force 
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% x0: initial condition for the position x(0)


% v0: initial condition for the velocity v(0)


% ----- Output argument ----
-

% t: time series with given time step from ti to tf.


% x: state variable matrix for corresponding time t matrix


% define time steps for solver and display


dt=0.1;


% set both initial time step size and maximum step size 


% for Runge-Kutta solver


options=odeset('InitialStep',dt,'MaxStep',dt);


% set time span to be generated from Runge-Kutta solver


% from 0 sec to 50 sec with 0.1 sec time step


td=[0:dt:50];


% Solve differential equation with Runge-Kutta solver 


[t,x]=ode45(@(t,X)MSD(t,X,m,b,k,F0,w),td,[x0;v0],options);


% Extract only particle position trajectory


O=[t x(:,1)];


end


function dX=MSD(t,X,m,b,k,F0,w)


%


% With two 1st order diffeential equations,


% obtain the derivative of each variables


% (position and velocity of the particle)


%


% t: current time


% X: matrix for state variables


% The first column : the particle position


% The second column : the particle velocity


% m,b,k,F0,w: parameters for the system


%


% Apply two 1st order differential equations


% dx(n+1)/dt<-v(n)


Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare 
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY]. 



dX(1,1)=X(2,1); 

% dv(n+1)/dt<-1/m*(F0sin(wt)-bv(n)-kx(n)) 

dX(2,1)=(1/m)*(F0*sin(w*t)-b*X(2,1)-k*X(1,1)); 

end 

Problem 6.4 :	 Trajectory of mss-spring-damper system with different parameters and 

initial conditions 

i) Following code is used to generate below plot. 
>> Oe=MSDSE(1,0.5,1,1,3,0,0); 


>> Or=MSDSRK(1,0.5,1,1,3,0,0); 


>> plot(Oe(:,1),Oe(:,2),'r',Or(:,1),Or(:,2),'b--','LineWidth',2); axis 


tight; grid on; 


>> xlabel('\bfTime (sec)'); ylabel('\bfParticle Position (m)'); 


>> title({'\bf Mass-Spring-Damper System Simulation'; 'm=1kg,


b=0.5Nsec/m, k=1N/m, F_0=1m, \omega=3rad/sec, x_0=0m, & v_0=0m/sec'}) 


>> legend('\bfEuler','\bfRunge-Kutta','Location','NorthEast') 


It’s the response of the sinusoidal excitation for the particle when it is stationary, and no 

spring is compressed or stretched. Comparing two results from Euler method and Runge-

Kutta method, they produce similar simulation results. The plot is shown as below: 
 Mass-Spring-Damper System Simulation
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ii) Following code is use to generate below plot. 
>> Oe=MSDSE(1,0.5,1,0,0,1,0); 


>> Or=MSDSRK(1,0.5,1,0,0,1,0); 


>> plot(Oe(:,1),Oe(:,2),'r',Or(:,1),Or(:,2),'b--','LineWidth',2); axis


tight; grid on; 


>> xlabel('\bfTime (sec)'); ylabel('\bfParticle Position (m)'); 


>> title({'\bf Mass-Spring-Damper System Simulation'; 'm=1kg, 


b=0.5Nsec/m, k=1N/m, F_0=0m, \omega=0rad/sec, x_0=1m, & v_0=0m/sec'}) 


>> legend('\bfEuler','\bfRunge-Kutta','Location','NorthEast') 


It’s the response with no external force and no damping when the spring is initially 

stretched. Comparing two results from Euler method and Runge-Kutta method, Runge-

Kutta method is more accurate than Euler method, based on the analytical solution of this 

system. The plot is shown as below: 
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>> Oe=MSDSE(1,0,1,1,1,0,0); 


>> Or=MSDSRK(1,0,1,1,1,0,0); 


>> plot(Oe(:,1),Oe(:,2),'r',Or(:,1),Or(:,2),'b--','LineWidth',2); axis 


tight; grid on; 
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>> xlabel('\bfTime (sec)'); ylabel('\bfParticle Position (m)'); 

>> title({'\bf Mass-Spring-Damper System Simulation'; 'm=1kg, 

b=0Nsec/m, k=1N/m, F_0=1m, \omega=1rad/sec, x_0=0m, & v_0=0m/sec'}) 

>> legend('\bfEuler','\bfRunge-Kutta','Location','NorthWest') 

It’s the response of external force with the system resonance frequency when the spring is 

initially stretched. Resonance happens very quickly, which means the particle position 

oscillates from −∞  to +∞ . However, numerical simulation has limitation to express the 

infinity. Therefore, as time goes on, oscillations for both methods become larger, but 

Euler method one has smaller oscillation, compared with Runge-Kutta one. So, Euler 

method is not powerful near the singularity. The plot is shown as below: 
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