
Massachusetts Institute of Technology

Department of Mechanical Engineering

2.003J/1.053J Dynamics & Control I

Fall 2007

Homework 3 Solution

Problem 3.1 :	 Calculate the trajectory of a ball dropping and bouncing without no drag

force

First, the function can be defined as below. No input argument and two output arguments (time

‘t’ and trajectory ‘h’)

function [t,h]=ball3

%

% Problem 3.1 Trajectory of the ball dropping and bouncing

% until the ball hits 3 times on the ground

%

Second, you should define some constants used in simulation: gravity, time step size, coefficients

of restitution, and whatever you need.

% Define constants

g=9.81; % gravity (m/sec^2)

dt=0.01; % time step[temporal resolution] (sec)

H=1; % initial height when ball start dropping

COR=0.8; % coefficient of restitution

Third, variables you used in the simulation are declared such as the height, velocity and so on,

but it is not really required. (Variable declarations in MATLAB are more flexible than any other

languages.)

% Initialize numerical simulation variables (It is not required)

t=[]; % time (sec)

h=[]; % height of the ball (m)

v=[]; % velocity of the ball (m/sec)

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Fourth, the initial conditions for solving differential equations of the ball dropping and bouncing

should be assigned to the initialized variables above. For example, the first element in the matrix

which stores height information has initial height when the ball starts dropping. (like h(1)=1;)

% Assign initial conditions

t(1)=0; % t0=0

h(1)=H; % h(t0=0)=H=1m

v(1)=0; % v(t0=0)=0 (no initial velocity)

a=-g; % a=-g, and always constant

Following diagram gives better understanding for relationship between the matrix defined in

MATLAB, and the function or the variable symbolized in mathematics. Note that index of matrices

should be always a positive integer. Therefore, how to translate symbolic expression into MATLAB

language will be explained later.

indicates single

0 dt 2dt

v(0) v(dt) v(2dt)

h(0)h

h(1)

h(dt) h(2dt) h(n×dt)

h(2) h(3) h(n)

v

v(1)

v(n×dt)

v(2) v(3) v(n)

t

t(1)

n×dt

t(2) t(3) t(n)
element of the

given matrix

indicates symbolic

expression of functions

or variables

Fifth, we define the index variable to indicate current position in the matrices. It is used for

indicating the relative position to current position, or for moving current position to calculate

next height of the ball bouncing.

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

% set index number i to 1 (initial condition for i=1)

 i=1;

Sixth, we should run the MATLAB codes for solving differential equations until ball hits on the

ground. In each bounce, new initial conditions are given to MATLAB, and it then runs same codes

again for solving differential equation. So, we repeat the MATLAB codes up to 3th bounce, which

means MATLAB codes for solving differential equations and providing new initial conditions are

repeated three times. Therefore, we first use ‘for’ loop since we already know how many loops

we need to calculate ball trajectory up to 3th bounce.

% repeat calculating velocity and height of the ball

% until the ball hits 3 times on the ground

for nbounce=1:3

Seventh, in the ‘for’ loop, the routine to solve differential equation numerically should be

inserted. Only one second derivative of the motion equation associated with the gravity is given

in the problem 3.1. It is a little complicated to solve the second order differential equation

directly, but one second order differential equation can be separated into two first order

differential equations as below:
2d h dh dv

= −g → = v & = −g (1)
dt2 dt dt

Based on Euler method, the first differential equations can be converted to the discrete difference

equation as follow:

v t() =
dh

≅
h t(+ Δ − t) h t ()

=
h t (+ Δ t) − h t()

dt→Δt (t + Δ −) t t
dt t Δ

v t()Δ =t h t (+ Δ t) − h t () (2)

h t(+ Δt) = h t() + v t ()Δt

Note that we assume Δt is small enough to accept numerical errors which happen during the

numerical simulation. In the same way, the second differential equation can be also translated.

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

v t t v t v t + Δ − v t+ Δ − tdv () () () ()
− =g ≅ =

dt→Δt (t + Δ −) t tdt t Δ

− Δ = g t v t (+ Δ − t) v t () (3)

v t(+ Δt) = v t() g t − Δ

Now, we should describe MATLAB version of difference equations, based on the difference

equations and relationship between symbolic expression and MATLAB language.

⎧ (+ Δt) = () + v t ()Δt ⎪) (n)+v (n)*dt ⎪h t h t ⎧h (n+1 =h

⎪⎩ v t(+ Δt) = v t g t ⎪⎩ v (n+1 =v n

⎨ () − Δ

⇒ ⎨) () -g*dt
(4)

t dt, t → n*dt, t t ()Δ → + Δ → n+1 *dt

Where () → h n , (+ Δ t → h (n+1 h t () h t))
() → () v t) → v n+1)v t v n , (+ Δ t (

By increasing index number (i=i+1), we can calculate the height of the ball bouncing until the

ball hits on the ground. However, how many loops we need before ball bouncing is not known.

(Even though we calculate it mathematically, computer cannot do.) Therefore, ‘while’ is used

to calculate every heights of the ball with the given time step as long as the ball hits on the

ground, or the calculated height of the ball is still either positive or zero. If the height of the ball

we calculated is negative number, ‘while’ loop is terminated since negative height of the ball

doesn’t make sense physically.

% if current height h(i) has negative number, terminate 'while' loop

% (it does not physically make sense.)

while h(i)>=0

% calculate time for given index number

 t(i+1)=t(i)+dt;

% calculate velocity of the ball at given time t(i+1)

 v(i+1)=v(i)+a*dt;

% calculate height of the ball at given time t(i+1)

 h(i+1)=h(i)+v(i)*dt;

% index 'i' increases by 1 to calculate next height

 i=i+1;

end

Eighth, we are supposed to give new initial conditions when the ball bounces. First, we eliminate

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

the last height we obtained since it has negative value. That’s why the index number should go

one step back (i=i-1). Then, we assume that this current position is approximately where the

ball is bounced. We observe how much the new ball’s velocity is changed, compared with the

ball’s velocity before the ball bouncing. The coefficient of restitution (COR) is given in the

homework, and the definition of the COR is as below:

CR =
v
v1

2

b

a

−
−

v
v

2

1

b

a (5)

where

v1b : Velocity of the first object before impact

v1a : Velocity of the first object after impact

v2b : Velocity of the second object before impact

v2a : Velocity of the second object after impact

In the case of ball bouncing, v2b = v2a = 0 (for the ground), and v1a = −ev 1b , e > 0 (for the ball),

since the second object (ground) is not moving and the direction of the first object (ball) velocity

is opposite after ball bouncing. The relation between the velocities of the ball both before and

after the impact is

0 − −evv2a − v1a (1b)C = = = 0.8 → ev = C v e C = 0.8 (6)→ = R 1b R 1b Rv1b − v2b v1b − 0

Therefore, new ball’s velocity has opposite sign of old ball’s velocity, and is reduced by the ratio

of COR. Last ‘end’ command makes program go back to ‘for’ loop, and run 3 times.

% delete current height related values and

% go back to the last height by decreasing i by 1

% (The last position where the ball is above the ground)

 t(i)=[]; v(i)=[]; h(i)=[];

 i=i-1;

% Assume that the ball bounce slightly above the ground,

% the initial velocity of the ball after bouncing is calculated with

% the final velocity of the ball before bouncing

% and coefficient of restitution

 v(i)=-COR*v(i);

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

% index 'i' increases by 1 to calculate next height

% with new condition after the ball bouncing.

end

Trajectory plot for the ball bouncing is shown in the end of Problem 3.3 solution.

Problem 3.2 : Calculate the trajectory of a ball dropping and bouncing with Stokes’ drag

In this problem, all the codes you developed in the previous problem are used here except for the

acceleration part. In problem 3.1, the acceleration is only gravity, and constant everywhere.

However, the new drag called Stoke’s drag is introduced in this problem, and it should be

plugged into acceleration calculation.

() g b () → a n t (Δ) = − − v n t) ⇒ a (n)=-g-b*v () na t = − − v t g b (Δ (7)

% if current height h(i) has negative number, terminate 'while' loop

% (it does not physically make sense.)

while h(i)>=0

% calculate time for given index number

 t(i+1)=t(i)+dt;

% calculate acceleration of the ball at given time t(i+1)

 a(i+1)=-g-b*v(i);

% calculate velocity of the ball at given time t(i+1)

 v(i+1)=v(i)+a(i)*dt;

% calculate height of the ball at given time t(i+1)

 h(i+1)=h(i)+v(i)*dt;

% index 'i' increases by 1 to calculate next height

 i=i+1;

end

In addition, initial condition for the acceleration should be also considered.

a 0 g b 0 → a 1 =-g-b*v 1 (8) () = − − v () () ()

% Assign initial conditions

t(1)=0; % t0=0

h(1)=H; % h(t0=0)=H=1m

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

v(1)=0; % v(t0=0)=0 (no initial velocity)

a(1)=-g-b*v(1); % a(t0=0)=-g-bv(t0=0)

In the section of defining constants, Stokes’ drag coefficient is also defined as below.

% Define constants

b=0.8; % constant for acceleration induced by stokes' drag (1/sec)

Trajectory plot for the ball bouncing is shown in the end of Problem 3.3 solution.

Problem 3.3 : Calculate the trajectory of a ball dropping and bouncing with quadratic

drag

In the same way, the ball bouncing with quadratic drag can be also calculated by modifying the

codes for calculating the acceleration and adding the initial condition of the ball bouncing in

problem 3.2

a t = − − a n t − − g v n t v n t (Δ) ⇒ a (n)=-g-v () (v)n *abs (n)() g v t() v t () → (Δ) = (Δ)
 (9)

% if current height h(i) has negative number, terminate 'while' loop

% (it does not physically make sense.)

while h(i)>=0

% calculate time for given index number

 t(i+1)=t(i)+dt;

% calculate acceleration of the ball at given time t(i+1)

 a(i+1)=-g-c*v(i)*abs(v(i));

% calculate velocity of the ball at given time t(i+1)

 v(i+1)=v(i)+a(i)*dt;

% calculate height of the ball at given time t(i+1)

 h(i+1)=h(i)+v(i)*dt;

% index 'i' increases by 1 to calculate next height

 i=i+1;

end

a () = − − ()0 g cv 0 v 0 → a 1 =-g-c*v 1 *abs v 1 (10) () () () (())
% Assign initial conditions

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

t(1)=0; % t0=0

h(1)=H; % h(t0=0)=H=1m

v(1)=0; % v(t0=0)=0 (no initial velocity)

a(1)=-g-c*v(1)*abs(v(1)); % a(t0=0)=-g-cv(t0=0)|(v(t0=0)|

In the section of defining constants, quadratic drag coefficient is also defined as below.

% Define constants

c=0.5; % constant for acceleration induced by quadratic drag (1/m)

All the plots for the ball bouncing in problem 3.1-3.3 are generated. Following codes are for

plotting three trajectories of the ball bouncing with different drag conditions.
>> [t1,h1]=ball3;

>> [t2,h2]=ball3stokes;

>> [t3,h3]=ball3quadratic;

>> plot(t1,h1,'r',t2,h2,’b’,t3,h3,'g');

>> grid on;

>> legend('\bfNo drag','\bfStokes'' drag','\bfQuadratic drag');

>> xlabel('\bfTime (sec)');

>> ylabel('\bfHeight (m)');

>> title('\bfTrajectories of the Ball Bouncing');

Trajectories of the Ball Bouncing

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Time (sec)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

He
ig

ht
 (m

)

No drag
Stokes' drag
Quadratic drag

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Problem 3.4 : Calculate more accurate bouncing time of the ball with given spatial

resolution

Go back to the solution in problem 3.1. What we are interested in is the part of determining the

bouncing time within the given tolerance (or spatial resolution) by changing step size. Following

algorithm describes how to find the step size to satisfy the spatial resolution criterion.

1.	 Current index number is set to the last one. (i=i-1)

2.	 Define new variable of the step size as ‘dtt’, and set it to the same value of ‘dt’

3.	 Check if the next height is positive and greater than the given time resolution, the next

time is set to the ball bouncing time, and the next velocity becomes the final velocity

before the ball hits on the ground.

4.	 If the next height is negative, the current step size decreases by the factor of 2 (0.5dtt).

Otherwise, the current step size is increases by the factor of 1.5 (1.5dtt).

⎛ ⎞

⎜ h t() ⎟
⎟ (11)

h t()
dtt = dtt * 1 	⎜ + 0.5

⎝ ⎠

5.	 Calculate the next height with new time step ‘dtt’ .

6.	 Go back to Step 3.

The above algorithm is implemented by MATLAB, and shown as below:

% go back to the last height by decreasing i by 1

% (The last position where the ball is above the ground)

 i=i-1;

% define new time step (adaptive time step)

 dtt=dt;

% if h(t) satisfies spatial resolution condition,

% terminate 'while' loop.

while h(i+1)>0.001 || h(i+1)<0

 dtt=dtt+dtt/2*sign(h(i+1));

% calculate time for given couter number

 t(i+1)=t(i)+dtt;

% recalculate velocity of the ball

 v(i+1)=v(i)+a*dtt;

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

% recalculate the height of ball

 h(i+1)=h(i)+v(i)*dtt;

end

% index 'i' increases by 1 with accepting new height

% with given spatial resolution

 i=i+1;

% Assume that the ball bounces on the ground,

% the initial velocity of the ball after bouncing is calculated with

% the final velocity of the ball before bouncing

% and coefficient of resititution

 v(i)=-COR*v(i);

% go back to calculate next height

The following codes and plot is for generating trajectory of the ball bouncing with the enough

spatial resolution.
>> [t,h]=ball3spatial; plot(t,h);

>> grid on;

>> xlabel('\bfTime (sec)');

>> ylabel('\bfHeight (m)');

>> title(...

'\bfTrajectories of the Ball Bouncing with Given Spatial Resolution');

He
ig

ht
 (m

)

Trajectories of the Ball Bouncing with Given Spatial Resolution
1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (sec)

Cite as: Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare
(http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

