2.002 MECHANICS & MATERIALS II

INTRODUCTION TO THE MACROSCOPIC
THEORY OF PLASTICITY

© L. Anand



RATE-DEPENDENCE AND
RATE-INDEPENDENCE

aglhﬁ Materal T — & copre Pleanougnon
d ﬂabz-&-d-tfe»&w!
tlashc €, 6l Respowse
€
u- s
y I - J:K_al- —
% Viccows |— €, Rate- De?ewle»l
€ Regponse
——
&
T & e
1 S_&a_&j
y Edotien e, Rate-Dependont
Ploshse g, B__ggfovu:e.



e Plastic deformation in metals is thermally-activated
and inherently rate-dependent.

e However, the plastic stress-strain response of most
single and polycrystalline materials at absolute tem-
peratures T < (1/3)T;,, where T}, is the melting tem-
perature of the material in degrees absolute, is only
slightly rate-sensitive, and in this temperature regime

it may be modeled as rate-independent.

Melting Temp, C T3, K (1/3)Tn, K

Material

Ti
Fe
Cu
Al
Pb

1663
1536
1083
660
327

1941

1809

1356
033
660
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311
200
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38
-73



T he governing variables in the one-dimensional rate-independent
constitutive model for elastic-plastic solids are

c Stress,

€ Strain,

eP Plastic strain,

s>0 Plastic deformation resistance,

internal variable with dimensions of stress.
Initial value of s: sg = oy — yield strength in tension



The constitutive model consists of the following set of
equations:

1. Elastic strain:

€ =¢c—

2. Constitutive Equation For o:

c=F[]=Fl[e— €], E — Young's Modulus



3. Yield Condition:

Let s denote an internal variable which is a nonzero,
positive-valued scalar with the dimensions of stress.
We call s the deformation resistance.

The assumption that only a single scalar characterizes
the complex internal characteristics of a material is,
of course, a gross simplification, but nevertheless, it
is widely used to great effectiveness in engineering
practice.



Next, we introduce a scalar valued function

flo,s) = o] — s,

called the yield function, and constrain the admissi-
ble states (o, s) such that

f(o,s8) = |o| —s <0.

This is called the vield condition.

The set of values of {s} giving resulting in f = 0 for
a given s is called the yield surface. In the present
one-dimensional context the yield surface is the pair
of points (¢ = —s,0 = +s). The yield surface defines
the boundary of the elastic domain at a given s.



Note that a state (o, s) with a value f(o,s) > 0 is not
admissible. For later use we note that when f = O,
this imposes the restriction that f‘ < 0.

To see this, let f(t) = f(o(t),s(t)) be the value of f
at time ¢, and consider a time = t+ Af with At > 0O,
then

f(r) = () + (1) At + o(AY).

Since f(t) = 0, we must have f(¢) < 0, otherwise
f(r) > 0, which is inadmissible.



4. Evolution Equation For ¢, Flow Rule:

T he plastic strain is taken to evolve according to the
flow rule

e? = €’ sign(o),
¢

§] it f <0 — elastic,
=<0 if f=0, and f <0 — elastic unloading,
>0 if f=0, and f=0— plastic loading,
ian(o) 4“1 if o> 0,
o) —
1 ifo<O,

where ¢ is the magnitude of the plastic strain rate,
and sign(o) gives the direction of plastic flow.

The conditions for € > 0 are called the loading /unloading
conditions.



0 if f <0 — elastic,
=40 if f=0, and f <0 — elastic unloading,
>0 if f=0, and f=0— plastic loading

If f < 0 then € = 0, the instantaneous response is
elastic. If f = 0, then we have an plastic-state and
it is possible that € > 0. If f =0 and f < 0, resulting
in € = 0, we have elastic unloading from a plastic
state. Finally, if f = 0 and f: 0, resulting in € > 0,
we have plastic loading.

Since e = 0 if f < 0, and € > 0 is possible only if
f =0, it follows that ¢ f = 0:



5. Evolution Equation For s, Hardening Rule:

Next, the evolution equation for the deformation re-
sistance s is taken as

s=he’, h=nh(s)
where } is a hardening function.

‘The material is said to be strain-hardening, per-
fectly plastic, or strain-softening according as h >
0, h =0 or h <0, respectively.



6. Consistency Condition:

Since from a plastic state f =0, & =0 if f < 0, and
e’ > 0 is possible only if f = 0, we have
&£f=0 if f=0.

This is called the consistency (persistency) condi-
tion. To elaborate, in order for € > 0, a state (o, s)
on the boundary of the elastic domain, that is one
satisfving f(o,s) = 0, must persist on the boundary
of the elastic domain, so that f(o,s) = 0. That is,
during a plastic process the pair (o, s) must continue
to satisfy the vield condition f = |c| —s = 0. This is
feasible only if

f=Tol—s=0

is satisfied.



7. Magnitude of €. Alternate form for the Load-
ing/Unloading Conditions:

The consistency condition serves to determine the
magnitude of the plastic strain rate, €, when plas-
tic flow occurs.

Since

d
—0‘ — sign(o),
do

we have
F| = sign(o) o.

Hence, using the rate form of the constitutive equa-
tion for stress,

6=E [é - sign(a)}



and the evolution equation for s,
§ = hé’,
we have
f — m _ S.:
= sign(o) ¢ — 3,
= sign(o) E [e‘ — é‘psign(a)} — he,
= sign(o) F [¢] — e’ {FE +h} <0.

We assume that

g={F+ h} > 0.

This is an important assumption; it sets a limit on the
negative values of the strain hardening function h.



Thus the magnitude of the plastic strain rate is

0 if f < O elastic,
& =130 if f =0, and {sign(c) E[¢]} < O,
g 1 {sign(¢) E[§]} if f=0, and {sign(c) E[€]} > O,
where

g={F+ h} > 0.
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Schematic of 'plastic loading and unloading from a
state of stress which satisfies the vield condition
f=|o|—s=0.



8. Elastic-plastic Tangent Moduli:
During plastic loading
6 =E[¢— &) =E |¢— &sign(o)],
=E|¢—g 'E[{] :E[é— E é] :Ell— E ] ¢

-, E+h E+h
- <E—|—h) ;




Hence,

b= EP[q,

with
E if # =0,
E™ = (EE::L}L) e > 0,

is the the elastic-plastic tangent modulus.

This provides an interpretation of our assumption g =
F + h > 0. During plastic loading, for a hardening
material A~ > 0 and E°? > 0. For a non-hardening
material h = 0 and E¢P = 0. For a strain-softening
material material h < 0 and F¢ < 0, but our assump-
tion g = F + h > 0 precludes K = —oo0.



SUMMARY OF 1-D FORMULATION

Regarding ¢ as the independent variable and {o, P, s} as

the dependent variables, the one-dimensional rate-independent
constitutive model for elastic-plastic solids with isotropic
hardening consists of the following set of equations:

1. Elastic strain:

€€ — € — &P,

2. Constitutive Equation For o:

o= Fle—€].



. Yield Condition:

f=|o] —s5<0.

. Flow Rule and Hardening Rule:

e’ = ’sign(o),
§=he’, h=h(s).

. Complementarity Conditions and Consistency Con-
dition:
f<o0, &>0, &f=0.
e f=0 if f=0.



. Magnitude of the plastic strain rate:

0 if f<0,
& =10 if f=0, and {sign(c) E[{} <O,
g 1{sign(c) E[€]} if f=0, and {sign(c) E[{} > O,
with

g={F+ h} > 0.



To complete this constitutive model for a given material,
the material properties/functions that need to be deter-
mined are

1. The Young’'s modulus F.

2. The initial values sg of s. This is widely called the
vield strength of the material and denoted by

oy = S0.

3. The strain-hardening function

h = h(s)|




The hardening function h(s) is determined as follows:

e Assume that F and the true stress-strain data (o versus ¢)
have been obtained from a compression or a tension
test.

e Then using ¢ = ¢ — (o/F) the (o versus ¢) data is
converted into (o versus €°).

If the data is obtained from a compression test, then
convert the data into (|o| versus [eP|).



e Next, since |c| = s and |eP| = €P during plastic flow,
the (|o| versus |eP|) data is identical to (s versus eP)
data, from which the desired hardening function can

d
be determined as the slope (h = d—fp versus s) .
&
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3-Dimensional T heory

The governing variables in the three-dimensional theory
are

Oij Stress
ou; ou .
e;; = (1/2) [8? + 8:;3] Strain
i 7
e% Plastic strain
S Isotropic deformation resistance,

dimensions of stress, s > 0



The constitutive model consists of the following set of
equations:

Elastic strain:

Constitutive Equation For Stress:

cij =Y. Cijki {Ekl — GM :

k.l
E Ev
Ciipy = 0.0 070 0,017,
17kl 2(1—|—V){ ik jl+ il jk}—I_ (1—|—V)(1 —2V) 17kl
FEF — Young’'s modulus,

v — Poisson’s ratio.



Yield Condition:

We introduce 3 yvield condition which bounds the levels
of stresses in the material. For isotropic materials, a
simple yield condition is

flo,s) <0,

where f(o,s) is a scalar-valued function of the applied
stress o, and the scalar s is a material property called
the deformation resistance of the material.



Isotropy requires that the dependence on o in the func-
tion f(o,s) can only appear in terms of its principal in-
variants {/q, >, I3}.

Since o is symmetric, then so also is the stress deviator

o' =0 —(1/3)(tro)1.
The symmetric tensor ¢’ has only five independent com-

ponents, and only two independent non-zero invariants:

1 . 0}1 ‘712 013
cr31 032 033



Thus, instead of the list of invariants {I, I», I3} for the
stress, we may use the following as an alternative list of
invariants for o:

I = Zakka [Z Uz; 33] 3 J3 = det {OJ} .
k

Additional invariants may be defined in terms of {J1, Jo, J3}.
The following list of invariants for the stress tensor are
widely used in the theory of isotropic plasticity:

1

ﬁ:—g[l O'_J ZO'ZJ z_j‘

‘The invariant p is called the mean normal stress, and ¢
is called the equivalent tensile stress.



The invariants p and o written out in full take the forms:

1. Mean normal stress:

_ 1
P=—3 (011 + 020 +033).

In the case of a state of hydrostatic pressure, o;; =
—pd;;, the mean normal stress is p = p.

2. Equivalent tensile stress:

o= F {(011 — 022)® + (022 — 033)% + (033 — 011)7}

2
+3{o%> + o33+ 051} 2

In the case of pure tension 011 = o, all other ¢;; = 0,
the equivalent tensile stress is ¢ =

ol.



Thus we may express our isotropic vield condition as

f(p,o,s) <O0.

For ductile metallic polycrystalline materials it has been
found experimentally that the function f(p,o,s) can, to a
very good approximation, be taken to be independent of
p, and the most widely used vield condition is the Mises
vield condition propsed by by Richard von Mises in 1913:

flo,s) =0 —s <0,

o= H% {(e11 — 022)% + (022 — 033)* + (033 — 011)?}

+ 3 {0%2 + o033 + 051}}1/2 :



Note that for this vield function

3
flo,s) =6 —s= EZJLLULL -5
k.l
the components of the outward normal to the yield

surface, f = o — s = 0, at the current stress point are

of _ |3
80'?;}' 2 o .




Normality Flow Rule (Levy, Saint Venant):
P =P 30;35
“=\2%

J Z(—IPGJZZO

The quantity

is called the equivalent tensile plastic strain rate.

Note that since ogj is deviatoric, EJ —1 ij’j — 0. Thus, ac-

cording to this flow rule, plastic flow is incompressible.



Equivalent tensile plastic strain rate:

- 2 .p. 20, . . . . .
e’ ng egefj — ‘ [5 {(E}il —5)° + (B — 53)° + (B3 — 6151)2}
i,

1/2
+ 5 {2+ (8% + (%2}

Let é}il denote the plastic strain rate in a simple ten-
sion/compression test. Then because of isotropy égz =
é§3, and becuase of plastic incompressibility

1

D D o r _ r __
€11 T €no T €33 =0 == €rp = €353 = — (5) €11

and all other éil = 0. Under these conditions

=L __ |.P
€ = €11

b

and hence the name equivalent tensile plastic strain rate.



The quantity

()= [ (e s,

is called the equivalent tensile plastic strain.

Hardening Rule:

s = he’, h=h(s) hardening function

Complementarity Conditions and Consistency Con-
dition:
f<0, &>0, &f=0,
e f=0 if f=0.



Magnitude of the plastic strain rate:

0] it f <0,
0 if f=0and {3, npoiidll <0,
& =10 if f=0and {3, npcd =0,
3 _ i : Ctri
Eg 1 {Zp’q npqo})gal}, if f =0 and {Zp,q npqo;gg'al} > 0,
with
3E
= h| > 0,
’ [2(1+u) i ]
3 (o
npg =4/ 21 outward unit normal to yield surface,
o

o)

bq

718 =N Cpgrsérs trial stress rate.

r,s



Summary

Strain Rate in Terms of Stress Rate;:

1 3.
G = [(1 +v)oi; —v (Ek-: dkk) Jij] + \/;Ep Mg

0 if f <O,
0 if f =0 and {3, ot <0,
e’ =<0 if f=0and {3, nposidl =0,
3 Ctri , - tri
Eg_l {Zp,qnpqa},ga'}, if f =0 and {Zp’q npqo},;'a'} > 0,



with Mises yield condition
f(a,s)=5—3<_:0
_ 1
= [— {(011 —022)% + (022 — 033)° + (033 — 011)2}

+ 3 {0%2 + 035 + 0%1}}1/2

’

and
3K
= h| > 0,
= gt
3 (o, . .
e = A5\ S outward unit normal to vield surface,
o)
GE1 = 3" Cpgrsérs trial stress rate.

T,8



Stress Rate in Terms of Strain Rate:

Gii = Liikikl

k,l
r . cz'jkl it .Ep — 0,
Ikt Cijir — (3/2) g1 (mijmkl) if € > 0,
FE FEv
ooy = 5.6 4 6.6, 5,8
11kl 2(1—'—1/){ ik jl_l_ il jk} + (1 T L/)(]_ — 21/) 7Ykl
3K
_ hl >0,
7 [2(1 Ty T ]

/

3 /0,

_ _ J
mi; = > CijkiMils ij =45 (T)
k.l o

L;;p1 are the elasto-plastic tangent moduli, and C;
are the elastic moduli.



Hardening Rule:

$=he’, h=h(s) hardening function

This is a generalization of the one-dimensional case with
e’ the equivalent tensile plastic strain rate.

T he quantity

?@zﬁﬁww,

is the equivalent tensile plastic strain.

For monotonic proportional loading the evolution equa-

tion for s may be integrated to give s as a function of
2



To complete this constitutive model for a given material,
the material properties/functions that need to be deter-
mined are the elastic moduli

(E: V) 3
the initial value
sg = oy Yyileld strength

of the deformation resistance s, and the hardening func-
tion

h = h(s).



The hardening function h(s) is determined from a a sim-
ple tension/compression test as follows:

e Assume that F and the true stress-strain data (o versus «¢)

have been obtained from a compression or a tension
test.

e Then using ¢ = ¢ — (¢/F) the (o versus ¢) data is
converted into (o versus &°).

If the data is obtained from a compression test, then
convert the data into (|o| versus [€P|).



e Next, since |c| = s and |eP| = €P during plastic flow,
the (|o| versus |eP|) data is identical to (s versus eP)
data, from which the desired hardening function can

d
be determined as the slope (h = —° versus s) .
c
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Concluding Remarks

e [ he equations for elastic-plastic deformation are cou-
pled differential evolutions for the stress o;; and the
deformation resistance s.

e T he solution of complex boundary-value problems us-
ing these equations is best carried out numerically.

e The constitutive equations described here (with some
possible change in notation and terminology) are the
ones most widely used in modern commercial finite-
element programs.



