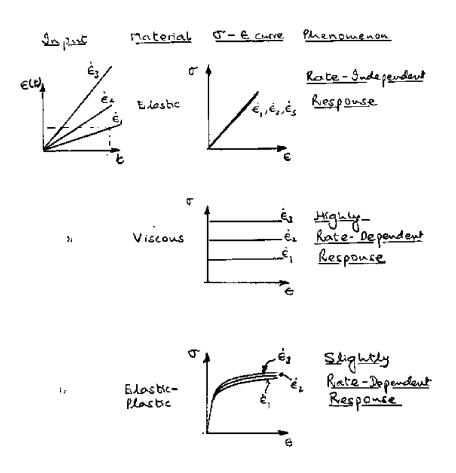
2.002 MECHANICS & MATERIALS II

INTRODUCTION TO THE MACROSCOPIC THEORY OF PLASTICITY

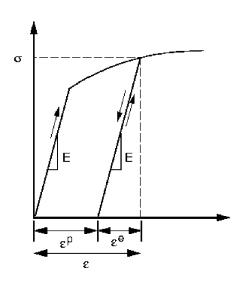
© L. Anand

RATE-INDEPENDENCE AND



- Plastic deformation in metals is thermally-activated and inherently rate-dependent.
- However, the plastic stress-strain response of most single and polycrystalline materials at absolute temperatures $T < (1/3)T_m$, where T_m is the melting temperature of the material in degrees absolute, is only slightly rate-sensitive, and in this temperature regime it may be modeled as **rate-independent**.

Material	Melting Temp, C	T_m , K	$(1/3)T_m$, K	$\equiv C$
Τi	1668	1941	647	374
Fe	1536	1809	603	330
Cu	1083	1356	452	179
ΑI	660	933	311	38
Pb	327	660	200	-73



The governing variables in the one-dimensional rate-independent constitutive model for elastic-plastic solids are

σ	Stress,
ϵ	Strain,
ϵ^p	Plastic strain,
s > 0	Plastic deformation resistance,
	internal variable with dimensions of stress.
	Initial value of s : $s_0 \equiv \sigma_y$ — yield strength in tension

The constitutive model consists of the following set of equations:

1. Elastic strain:

$$\epsilon^e = \epsilon - \epsilon^p$$

2. Constitutive Equation For σ :

$$\sigma = E\left[\epsilon^e\right] = E\left[\epsilon - \epsilon^p\right], \quad \mathsf{E} - \mathsf{Young's} \; \mathsf{Modulus}$$

3. Yield Condition:

Let s denote an internal variable which is a nonzero, positive-valued scalar with the dimensions of stress. We call s the **deformation resistance**.

The assumption that only a single scalar characterizes the complex internal characteristics of a material is, of course, a gross simplification, but nevertheless, it is widely used to great effectiveness in engineering practice. Next, we introduce a scalar valued function

$$f(\sigma,s) = |\sigma| - s,$$

called the **yield function**, and constrain the admissible states (σ, s) such that

$$f(\sigma,s)=|\sigma|-s\leq 0.$$

This is called the **yield condition**.

The set of values of $\{\sigma\}$ giving resulting in f=0 for a given s is called the **yield surface**. In the present one-dimensional context the yield surface is the pair of points $(\sigma=-s,\sigma=+s)$. The yield surface defines the boundary of the elastic domain at a given s.

Note that a state (σ, s) with a value $f(\sigma, s) > 0$ is not admissible. For later use we note that when f = 0, this imposes the restriction that $\dot{f} \leq 0$.

To see this, let $f(t) = f(\sigma(t), s(t))$ be the value of f at time t, and consider a time $\tau = t + \Delta t$ with $\Delta t > 0$, then

$$f(\tau) = f(t) + \dot{f}(t) \Delta t + o(\Delta t).$$

Since f(t) = 0, we must have $\dot{f}(t) \leq 0$, otherwise $f(\tau) > 0$, which is inadmissible.

4. Evolution Equation For ϵ^p , Flow Rule:

The plastic strain is taken to evolve according to the flow rule

$$\begin{split} \dot{\epsilon}^p &= \dot{\overline{\epsilon}}^p \operatorname{sign}(\sigma), \\ \dot{\overline{\epsilon}}^p &= \begin{cases} 0 & \text{if } f < 0 & \text{— elastic,} \\ 0 & \text{if } f = 0, \quad \text{and} \quad \dot{f} < 0 & \text{— elastic unloading,} \\ > 0 & \text{if } f = 0, \quad \text{and} \quad \dot{f} = 0 \text{— plastic loading,} \end{cases} \\ \operatorname{sign}(\sigma) &= \begin{cases} 1 & \text{if } \sigma > 0, \\ -1 & \text{if } \sigma < 0, \end{cases} \end{split}$$

where $\dot{\epsilon}^p$ is the **magnitude** of the plastic strain rate, and $sign(\sigma)$ gives the **direction of plastic flow**.

The conditions for $\dot{\epsilon}^p \ge 0$ are called the **loading/unloading** conditions.

If f < 0 then $\dot{\epsilon}^p = 0$, the instantaneous response is **elastic**. If f = 0, then we have an **plastic-state** and it is possible that $\dot{\epsilon}^p \geq 0$. If f = 0 and $\dot{f} < 0$, resulting in $\dot{\epsilon}^p = 0$, we have **elastic unloading** from a plastic state. Finally, if f = 0 and $\dot{f} = 0$, resulting in $\dot{\epsilon}^p > 0$, we have **plastic loading**.

Since $\dot{\epsilon}^p=0$ if f<0, and $\dot{\epsilon}^p>0$ is possible only if f=0, it follows that $\dot{\epsilon}^pf=0$:

$$f \leq 0$$
, $\dot{\epsilon}^p \geq 0$, $\dot{\epsilon}^p f = 0$.

5. Evolution Equation For s, Hardening Rule:

Next, the evolution equation for the deformation resistance \boldsymbol{s} is taken as

$$\dot{s} = h \, \dot{\epsilon}^p, \quad h = \hat{h}(s)$$

where \hat{h} is a **hardening function**.

The material is said to be **strain-hardening**, **perfectly plastic**, or **strain-softening** according as h > 0, h = 0 or h < 0, respectively.

6. Consistency Condition:

Since from a plastic state f=0, $\dot{\epsilon}^p=0$ if $\dot{f}<0$, and $\dot{\epsilon}^p>0$ is possible only if $\dot{f}=0$, we have

$$\dot{\epsilon}^p \dot{f} = 0$$
 if $f = 0$.

This is called the **consistency (persistency) condition**. To elaborate, in order for $\dot{\epsilon}^p > 0$, a state (σ, s) on the boundary of the elastic domain, that is one satisfying $f(\sigma, s) = 0$, must persist on the boundary of the elastic domain, so that $\dot{f}(\sigma, s) = 0$. That is, during a plastic process the pair (σ, s) must continue to satisfy the yield condition $f = |\sigma| - s = 0$. This is feasible only if

$$\dot{f} = \frac{\dot{\sigma}}{|\sigma|} - \dot{s} = 0$$

is satisfied.

7. Magnitude of $\dot{\epsilon}^p$. Alternate form for the Loading/Unloading Conditions:

The consistency condition serves to determine the magnitude of the plastic strain rate, $\dot{\epsilon}^p$, when plastic flow occurs.

Since

$$\frac{\mathrm{d} |\sigma|}{\mathrm{d}\sigma} = \mathrm{sign}(\sigma),$$

we have

$$\frac{\dot{\sigma}}{|\sigma|} = \operatorname{sign}(\sigma) \dot{\sigma}.$$

Hence, using the rate form of the constitutive equation for stress,

$$\dot{\sigma} = E\left[\dot{\epsilon} - \dot{\bar{\epsilon}}^p \operatorname{sign}(\sigma)\right]$$

and the evolution equation for s,

$$\dot{s} = h \, \dot{\bar{\epsilon}}^p$$

we have

$$\begin{split} \dot{f} &= \overline{|\sigma|} - \dot{s}, \\ &= \operatorname{sign}(\sigma) \, \dot{\sigma} - \dot{s}, \\ &= \operatorname{sign}(\sigma) \, E \left[\dot{\epsilon} - \dot{\overline{\epsilon}}^p \operatorname{sign}(\sigma) \right] - h \, \dot{\overline{\epsilon}}^p, \\ &= \operatorname{sign}(\sigma) \, E \left[\dot{\epsilon} \right] - \dot{\overline{\epsilon}}^p \left\{ E + h \right\} \leq 0. \end{split}$$

We assume that

$$g \equiv \{E + h\} > 0.$$

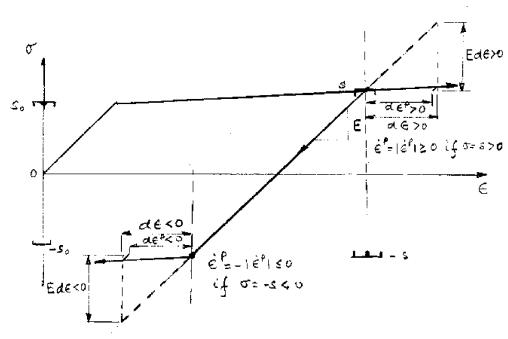
This is an important assumption; it sets a limit on the negative values of the strain hardening function h.

Thus the magnitude of the plastic strain rate is

$$\dot{\vec{\epsilon}}^p = \begin{cases} 0 & \text{if } f < 0 \text{ elastic,} \\ 0 & \text{if } f = 0, \text{ and } \{ \text{sign}(\sigma) \, E \, [\dot{\epsilon}] \} < 0, \\ g^{-1} \, \{ \text{sign}(\sigma) \, E \, [\dot{\epsilon}] \} & \text{if } f = 0, \text{ and } \{ \text{sign}(\sigma) \, E \, [\dot{\epsilon}] \} > 0, \end{cases}$$

where

$$g \equiv \{E+h\} > 0.$$



Schematic of plastic loading and unloading from a state of stress which satisfies the yield condition $f = |\sigma| - s = 0.$

8. Elastic-plastic Tangent Moduli:

During plastic loading

$$\begin{split} \dot{\sigma} &= E\left[\dot{\epsilon} - \dot{\epsilon}^p\right] = E\left[\dot{\epsilon} - \dot{\bar{\epsilon}}^p \operatorname{sign}(\sigma)\right], \\ &= E\left[\dot{\epsilon} - g^{-1}E\left[\dot{\epsilon}\right]\right] = E\left[\dot{\epsilon} - \frac{E}{E+h}\dot{\epsilon}\right] = E\left[1 - \frac{E}{E+h}\right]\dot{\epsilon}. \\ &= \left(\frac{Eh}{E+h}\right)\dot{\epsilon}, \end{split}$$

Hence,

$$\dot{\sigma} = E^{ep} \left[\dot{\epsilon} \right],$$

with

$$E^{ep} = egin{cases} E & ext{if } \dot{\epsilon}^p = 0, \ \left(rac{Eh}{E+h}
ight) & ext{if } \dot{\epsilon}^p > 0, \end{cases}$$

is the the elastic-plastic tangent modulus.

This provides an interpretation of our assumption g=E+h>0. During plastic loading, for a hardening material h>0 and $E^{ep}>0$. For a non-hardening material h=0 and $E^{ep}=0$. For a strain-softening material material h<0 and $E^{ep}<0$, but our assumption g=E+h>0 precludes $E^{ep}=-\infty$.

SUMMARY OF 1-D FORMULATION

Regarding ϵ as the independent variable and $\{\sigma, \epsilon^p, s\}$ as the dependent variables, the one-dimensional rate-independent constitutive model for elastic-plastic solids with isotropic hardening consists of the following set of equations:

1. Elastic strain:

$$\epsilon^e = \epsilon - \epsilon^p$$
.

2. Constitutive Equation For σ :

$$\sigma = E\left[\epsilon - \epsilon^p\right].$$

3. Yield Condition:

$$f = |\sigma| - s \le 0$$
.

4. Flow Rule and Hardening Rule:

$$\dot{\epsilon}^p = \dot{\bar{\epsilon}}^p \operatorname{sign}(\sigma),$$

 $\dot{s} = h \, \dot{\bar{\epsilon}}^p, \quad h = \hat{h}(s).$

5. Complementarity Conditions and Consistency Condition:

$$f \le 0, \quad \dot{\epsilon}^p \ge 0, \quad \dot{\epsilon}^p f = 0.$$
 $\dot{\epsilon}^p \dot{f} = 0.$

6. Magnitude of the plastic strain rate:

$$\dot{\vec{\epsilon}}^p = \begin{cases} 0 & \text{if } f < 0, \\ 0 & \text{if } f = 0, \text{ and } \{ \operatorname{sign}(\sigma) E \left[\dot{\epsilon} \right] \} < 0, \\ g^{-1} \left\{ \operatorname{sign}(\sigma) E \left[\dot{\epsilon} \right] \right\} & \text{if } f = 0, \text{ and } \left\{ \operatorname{sign}(\sigma) E \left[\dot{\epsilon} \right] \right\} > 0, \end{cases}$$
 with
$$g \equiv \left\{ E + h \right\} > 0.$$

To complete this constitutive model for a given material, the material properties/functions that need to be determined are

- 1. The Young's modulus E.
- 2. The initial values s_0 of s. This is widely called the **yield strength** of the material and denoted by

$$\sigma_y \equiv s_{\mathsf{0}}.$$

3. The strain-hardening function

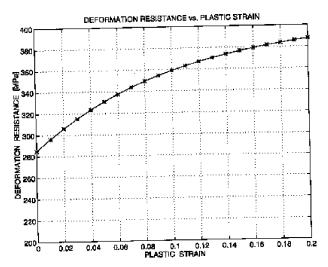
$$h = \hat{h}(s)$$
.

The hardening function $\hat{h}(s)$ is determined as follows:

- Assume that E and the true stress-strain data (σ versus ϵ) have been obtained from a compression or a tension test.
- Then using $\epsilon^p = \epsilon (\sigma/E)$ the $(\sigma \text{ versus } \epsilon)$ data is converted into $(\sigma \text{ versus } \epsilon^p)$.

If the data is obtained from a compression test, then convert the data into $(|\sigma| \text{ versus } |\epsilon^p|)$.

• Next, since $|\sigma|=s$ and $|\epsilon^p|=\overline{\epsilon}^p$ during plastic flow, the $(|\sigma| \text{ versus } |\epsilon^p|)$ data is **identical** to $(s \text{ versus } \overline{\epsilon}^p)$ data, from which the desired hardening function can be determined as the slope $(h=\frac{\mathrm{d}s}{\mathrm{d}\overline{\epsilon}^p} \text{ versus } s)$.



s vs $\bar{\epsilon}^p$ for 6061-T6 all alloy at room temp.

3-Dimensional Theory

The governing variables in the three-dimensional theory are

$$\begin{aligned}
\sigma_{ij} \\
\epsilon_{ij} &= (1/2) \left[\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right] \\
\epsilon_{ij}^p \\
\epsilon_{ij}^p
\end{aligned}$$

Stress

Strain

Plastic strain

Isotropic deformation resistance, dimensions of stress, s > 0

The constitutive model consists of the following set of equations:

Elastic strain:

$$\epsilon^e_{ij} = \epsilon_{ij} - \epsilon^p_{ij}$$

Constitutive Equation For Stress:

$$\sigma_{ij} = \sum_{k,l} \; \mathcal{C}_{ijkl} \left[\epsilon_{kl} - \epsilon^p_{kl} \right].$$

$$\begin{split} \mathcal{C}_{ijkl} = & \frac{E}{2(1+\nu)} \left\{ \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk} \right\} + \frac{E\nu}{(1+\nu)(1-2\nu)} \, \delta_{ij} \delta_{kl}, \\ E \qquad \text{Young's modulus,} \\ \nu \qquad \text{Poisson's ratio.} \end{split}$$

Yield Condition:

We introduce a **yield condition** which bounds the levels of stresses in the material. For isotropic materials, a simple yield condition is

$$f(\boldsymbol{\sigma},s)\leq 0,$$

where $f(\sigma, s)$ is a scalar-valued function of the applied stress σ , and the scalar s is a **material property** called the **deformation resistance** of the material.

Isotropy requires that the dependence on σ in the function $f(\sigma, s)$ can only appear in terms of its principal invariants $\{I_1, I_2, I_3\}$.

Since σ is symmetric, then so also is the **stress deviator**

$$\sigma' = \sigma - (1/3)(\operatorname{tr}\sigma)1.$$

The symmetric tensor σ' has only five independent components, and only two independent non-zero invariants:

$$J_2 = \frac{1}{2} \begin{bmatrix} \sum_{i,j} \sigma'_{ij} \sigma'_{ij} \end{bmatrix}, \qquad J_3 = \det \begin{bmatrix} \sigma'_{11} & \sigma'_{12} & \sigma'_{13} \\ \sigma'_{21} & \sigma'_{22} & \sigma'_{23} \\ \sigma'_{31} & \sigma'_{32} & \sigma'_{33} \end{bmatrix}.$$

Thus, instead of the list of invariants $\{I_1, I_2, I_3\}$ for the stress, we may use the following as an alternative list of invariants for σ :

$$I_1 = \sum_k \sigma_{kk}, \qquad J_2 = \frac{1}{2} \left[\sum_{i,j} \sigma'_{ij} \sigma'_{ij} \right], \qquad J_3 = \det \left[\boldsymbol{\sigma}' \right].$$

Additional invariants may be defined in terms of $\{J_1, J_2, J_3\}$. The following list of invariants for the stress tensor are widely used in the theory of isotropic plasticity:

$$ar{p} = -rac{1}{3}I_1 \qquad ar{\sigma} = \sqrt{rac{3}{2}\sum_{i,j}\sigma'_{ij}\sigma'_{ij}}$$

The invariant \bar{p} is called the **mean normal stress**, and $\bar{\sigma}$ is called the **equivalent tensile stress**.

The invariants \bar{p} and $\bar{\sigma}$ written out in full take the forms:

1. Mean normal stress:

$$\bar{p} = -\frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33}).$$

In the case of a state of hydrostatic pressure, $\sigma_{ij} = -p \, \delta_{ij}$, the mean normal stress is $\bar{p} = p$.

2. Equivalent tensile stress:

$$\bar{\sigma} = \left| \left[\frac{1}{2} \left\{ (\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 \right\} \right. \\ + 3 \left\{ \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2 \right\} \right]^{1/2} \right|$$

In the case of pure tension $\sigma_{11} = \sigma$, all other $\sigma_{ij} = 0$, the equivalent tensile stress is $\bar{\sigma} = |\sigma|$.

Thus we may express our isotropic yield condition as

$$f(\bar{p},\bar{\sigma},s)\leq 0.$$

For ductile metallic polycrystalline materials it has been found experimentally that the function $f(\bar{p}, \bar{\sigma}, s)$ can, to a very good approximation, be taken to be **independent** of \bar{p} , and the most widely used yield condition is the **Mises** yield condition propsed by by Richard von Mises in 1913:

$$f(\sigma,s) = \bar{\sigma} - s \leq 0,$$

with

$$\bar{\sigma} = \left| \left[\frac{1}{2} \left\{ (\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 \right\} \right.$$

$$\left. + 3 \left\{ \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2 \right\} \right]^{1/2} \right|.$$

Note that for this yield function

$$f(\boldsymbol{\sigma},s) = \bar{\sigma} - s = \sqrt{\frac{3}{2} \sum_{k,l} \boldsymbol{\sigma}'_{kl} \boldsymbol{\sigma}'_{kl} - s}$$

the components of the outward normal to the yield surface, $f = \bar{\sigma} - s = 0$, at the current stress point are

$$\frac{\partial f}{\partial \sigma_{ij}} = \left\{ \frac{3}{2} \frac{\sigma'_{ij}}{\bar{\sigma}} \right\}.$$

Normality Flow Rule (Levy, Saint Venant):

$$\dot{\epsilon}_{ij}^p = \dot{\bar{\epsilon}}^p \left(\frac{3\sigma'_{ij}}{2\,\bar{\sigma}} \right)$$

The quantity

$$egin{aligned} \dot{ar{\epsilon}}^p \equiv \sqrt{rac{2}{3} \sum_{i,j} \dot{\epsilon}^p_{ij} \dot{\epsilon}^p_{ij}} \geq 0. \end{aligned}$$

is called the equivalent tensile plastic strain rate.

Note that since σ'_{ij} is deviatoric, $\sum_{j=1}^{3} \dot{\epsilon}^p_{jj} = 0$. Thus, according to this flow rule, **plastic flow is incompressible**.

Equivalent tensile plastic strain rate:

$$\dot{\epsilon}^p \equiv \sqrt{\frac{2}{3} \sum_{i,j} \dot{\epsilon}_{ij}^p \dot{\epsilon}_{ij}^p} = \left| \left[\frac{2}{9} \left\{ (\dot{\epsilon}_{11}^p - \dot{\epsilon}_{22}^p)^2 + (\dot{\epsilon}_{22}^p - \dot{\epsilon}_{33}^p)^2 + (\dot{\epsilon}_{33}^p - \dot{\epsilon}_{11}^p)^2 \right\} \right. \\
\left. + \frac{4}{3} \left\{ (\dot{\epsilon}_{12}^p)^2 + (\dot{\epsilon}_{23}^p)^2 + (\dot{\epsilon}_{31}^p)^2 \right\} \right]^{1/2} \right|$$

Let $\dot{\epsilon}_{11}^p$ denote the plastic strain rate in a simple tension/compression test. Then because of isotropy $\dot{\epsilon}_{22}^p = \dot{\epsilon}_{33}^p$, and because of plastic incompressibility

$$\dot{\epsilon}_{11}^p + \dot{\epsilon}_{22}^p + \dot{\epsilon}_{33}^p = 0 \Longrightarrow \dot{\epsilon}_{22}^p = \dot{\epsilon}_{33}^p = -\left(\frac{1}{2}\right)\dot{\epsilon}_{11}^p,$$

and all other $\dot{\epsilon}_{kl}^p = 0$. Under these conditions

$$\dot{\epsilon}^p = \left| \dot{\epsilon}_{11}^p \right|,$$

and hence the name equivalent tensile plastic strain rate.

The quantity

$$\left| \overline{\epsilon}^p(t) = \int_0^t \dot{\overline{\epsilon}}^p(\xi) \, \mathrm{d}\xi,
ight|$$

is called the equivalent tensile plastic strain.

Hardening Rule:

$$\dot{s} = h \, \dot{\epsilon}^p$$
, $h = \hat{h}(s)$ hardening function

Complementarity Conditions and Consistency Condition:

$$f \le 0, \quad \dot{\epsilon}^p \ge 0, \quad \dot{\epsilon}^p f = 0,$$

 $\dot{\epsilon}^p \dot{f} = 0 \quad \text{if} \quad f = 0.$

Magnitude of the plastic strain rate:

$$\dot{\vec{\epsilon}}^p = \begin{cases} 0 & \text{if } f < 0, \\ 0 & \text{if } f = 0 \text{ and } \left\{ \sum_{p,q} n_{pq} \dot{\sigma}_{pq}^{\mathsf{trial}} \right\} < 0, \\ 0 & \text{if } f = 0 \text{ and } \left\{ \sum_{p,q} n_{pq} \dot{\sigma}_{pq}^{\mathsf{trial}} \right\} = 0, \\ \sqrt{\frac{3}{2}} g^{-1} \left\{ \sum_{p,q} n_{pq} \dot{\sigma}_{pq}^{\mathsf{trial}} \right\}, & \text{if } f = 0 \text{ and } \left\{ \sum_{p,q} n_{pq} \dot{\sigma}_{pq}^{\mathsf{trial}} \right\} > 0, \end{cases}$$

with

$$g \equiv \left[\frac{3E}{2(1+\nu)} + h\right] > 0,$$

$$n_{pq} \equiv \sqrt{\frac{3}{2}} \left(\frac{\sigma'_{pq}}{\bar{\sigma}}\right) \text{ outward unit normal to yield surface,}$$

$$\dot{\sigma}_{pq}^{\text{trial}} \equiv \sum_{r,s} \, \mathcal{C}_{pqrs} \dot{\epsilon}_{rs} \, \text{ trial stress rate.}$$

Summary

Strain Rate in Terms of Stress Rate:

$$\dot{\epsilon}_{ij} = rac{1}{E} \left[(1+
u) \dot{\sigma}_{ij} -
u \left(\sum_k \dot{\sigma}_{kk}
ight) \delta_{ij}
ight] + \sqrt{rac{3}{2}} \, \dot{ar{\epsilon}}^p \, n_{ij}$$

$$\dot{\bar{\epsilon}}^p = \begin{cases} 0 & \text{if } f < 0, \\ 0 & \text{if } f = 0 \text{ and } \left\{ \sum_{p,q} n_{pq} \dot{\sigma}_{pq}^{\mathsf{trial}} \right\} < 0, \\ 0 & \text{if } f = 0 \text{ and } \left\{ \sum_{p,q} n_{pq} \dot{\sigma}_{pq}^{\mathsf{trial}} \right\} = 0, \\ \sqrt{\frac{3}{2}} g^{-1} \left\{ \sum_{p,q} n_{pq} \dot{\sigma}_{pq}^{\mathsf{trial}} \right\}, & \text{if } f = 0 \text{ and } \left\{ \sum_{p,q} n_{pq} \dot{\sigma}_{pq}^{\mathsf{trial}} \right\} > 0, \end{cases}$$

with Mises yield condition

$$f(\boldsymbol{\sigma}, s) = \bar{\sigma} - s \le 0$$

$$\bar{\sigma} = \left| \left[\frac{1}{2} \left\{ (\sigma_{11} - \sigma_{22})^2 + (\sigma_{22} - \sigma_{33})^2 + (\sigma_{33} - \sigma_{11})^2 \right\} + 3 \left\{ \sigma_{12}^2 + \sigma_{23}^2 + \sigma_{31}^2 \right\} \right]^{1/2} \right|,$$

and

$$g \equiv \left[\frac{3E}{2(1+\nu)} + h\right] > 0,$$

$$n_{pq} \equiv \sqrt{\frac{3}{2}} \left(\frac{\sigma'_{pq}}{\bar{\sigma}}\right) \text{ outward unit normal to yield surface,}$$

$$\dot{\sigma}_{pq}^{\text{trial}} \equiv \sum_{r,s} \, \mathcal{C}_{pqrs} \dot{\epsilon}_{rs} \, \, \text{trial stress rate.}$$

Stress Rate in Terms of Strain Rate:

$$egin{aligned} \dot{\sigma}_{ij} &= \sum_{k,l} \mathcal{L}_{ijkl} \dot{\epsilon}_{kl} \ \mathcal{L}_{ijkl} &= egin{cases} \mathcal{C}_{ijkl} & ext{if } \dot{\epsilon}^p = 0, \ \mathcal{C}_{ijkl} - (3/2) \, g^{-1} \, \left(m_{ij} m_{kl}
ight) & ext{if } \dot{\epsilon}^p > 0, \ \mathcal{C}_{ijkl} &= rac{E}{2(1+
u)} \left\{ \delta_{ik} \delta_{jl} + \delta_{il} \delta_{jk}
ight\} + rac{E
u}{(1+
u)(1-2
u)} \, \delta_{ij} \delta_{kl}, \ g &= \left[rac{3E}{2(1+
u)} + h
ight] > 0, \ m_{ij} &\equiv \sum_{k,l} \mathcal{C}_{ijkl} n_{kl}, \qquad n_{ij} &\equiv \sqrt{rac{3}{2}} \left(rac{\sigma'_{ij}}{ar{\sigma}} \right) \end{aligned}$$

 \mathcal{L}_{ijkl} are the elasto-plastic tangent moduli, and \mathcal{C}_{ijkl} are the elastic moduli.

Hardening Rule:

$$\dot{s} = h \, \dot{\epsilon}^p$$
, $h = \hat{h}(s)$ hardening function

This is a generalization of the one-dimensional case with $\dot{\epsilon}^p$ the equivalent tensile plastic strain rate.

The quantity

$$\left| \overline{\epsilon}^p(t) = \int_0^t \dot{\overline{\epsilon}}^p(\xi) \, \mathrm{d}\xi,
ight|$$

is the equivalent tensile plastic strain.

For monotonic proportional loading the evolution equation for s may be integrated to give s as a function of $\overline{\epsilon}^p$:

$$s = \widehat{s}(\overline{\epsilon}^p).$$

To complete this constitutive model for a given material, the material properties/functions that need to be determined are the **elastic moduli**

$$(E,\nu)$$
,

the initial value

$$s_0 \equiv \sigma_y$$
 yield strength

of the deformation resistance s, and the **hardening func**tion

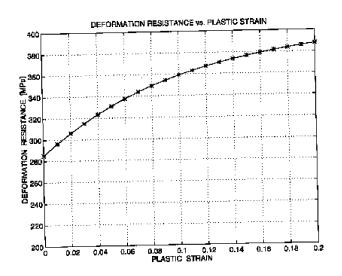
$$h = \hat{h}(s)$$
.

The hardening function $\hat{h}(s)$ is determined from a **a sim**ple tension/compression test as follows:

- Assume that E and the true stress-strain data (σ versus ϵ) have been obtained from a compression or a tension test.
- Then using $\epsilon^p = \epsilon (\sigma/E)$ the $(\sigma \text{ versus } \epsilon)$ data is converted into $(\sigma \text{ versus } \epsilon^p)$.

If the data is obtained from a compression test, then convert the data into $(|\sigma| \text{ versus } |\epsilon^p|)$.

• Next, since $|\sigma|=s$ and $|\epsilon^p|=\overline{\epsilon}^p$ during plastic flow, the $(|\sigma| \text{ versus } |\epsilon^p|)$ data is **identical** to $(s \text{ versus } \overline{\epsilon}^p)$ data, from which the desired hardening function can be determined as the slope $(h=\frac{\mathrm{d}s}{\mathrm{d}\overline{\epsilon}^p} \text{ versus } s)$.



s vs $\bar{\epsilon}^p$ for 6061-T6 all alloy at room temp.

Concluding Remarks

- The equations for elastic-plastic deformation are coupled differential evolutions for the stress σ_{ij} and the deformation resistance s.
- The solution of complex boundary-value problems using these equations is best carried out numerically.
- The constitutive equations described here (with some possible change in notation and terminology) are the ones most widely used in modern commercial finiteelement programs.