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Outline

*Elements of polymer structure
Linear vs. branched;
*VVinyl polymers and substitutions
*Packing of polymer chains
Random/amorphous
*Glass transition temperature, T
*Semi-crystalline
Crystalline volume fraction; melting temperature
*Amorphous T
*Elements of linear viscoelasticity
*Creep and relaxation
*Analogue models



|dealized Linear Elastic Response

Linear elasticity: o(t) = E e(t)
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Idealized Linear Viscous Response
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Linear viscosity: o(t) = n d( ) =née(t)
4
Creep: Relaxation:
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like the strain-rate, goes to zero



Maxwell Model: an ldealized Linear
Viscoelastic Response

Creep:
INPUT:

e(t) = eelastic(t) + eviscous(t);
©0 é(t) 6'elastic(t) + 6'viscous(t)

a(t)/E+o(t)/n
P
OUTPUT: t L_J N | N
*For times near the finite

g(t) stress jump, all strain occurs
in the elastic element;

E *During the hold period, all
strain occurs in the viscous
element
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Maxwell Model: an Idealized Linear
Viscoelastic Response
e(t) = 6elastic(t) ‘I'Eviscous(t);

: €(t) = €elastic(t) + €viscous(t)
INPUT: = S(D)/E +o()/n

Relaxation:

e(t) 4 -For times > 0, d &(t)/dt=0
£0 *During the hold period, elastic
strain is traded for viscous
S = J_ ; strain, and stress drops:
' do(t) FE
o(t) 0 = + —0
A dt n
- En E o(t) o(t =0) exp—t/(n/E)

\ eg X B exp—t/(n/E)

(t) =

Characteristic relaxation time:
t=n/E



“Real” Polymer Relaxation
(an Idealization)

e(t) 4 INPUT:
£
Testing of real polymers under relaxation
e can be used to extract a time-dependent
relaxation modulus, E(t);
o §  OUTPUT: Short-term response: E,;
- E{0)£0=Epy g Long-term response: E,,
Ere €0 t E-(t) = o'(t)/eo;
E(t}
_ E(0)=Eg
Er(t — oc0) = Ere (equilibrium)
Ere
. NOTE: provided || is sufficiently small

(typically, less than 0.01), the relaxation modulus,
E.(t), is approximately independent of g,.



OUTPUT:

“Real” Polymer Creep:
(an Idealization)

Testing of real polymers under suddenly-

applied constant stress can be used to

extract a time-dependent creep function, J (t);
oo Short-term response: J;

Long-term response: J_,

Je(t) = e(t)/o0;

Je(t — 01) = Jeg  (glassy)

Jee ©
m:cm Jo(t — o00) = Jee  (equilibrium)

O § Note: units of J (t) : 1/ stress
N NOTE: provided |e(t)| remains sufficiently
)= small (typically, less than 0.01), the creep

© « t function, J (t), is approximately

independent of .



Relaxation Modulus, E (t) and Creep
Function, J_(t): Inverse Functions of Time?

Function Dimensions Trend

Je(t) 1/stress starts small; grows with time

Er(t) stress starts large; decays with time

QUESTION: Are these inverse functions? Is J (t) x[E.(t) = 1 for all times?

*ANSWERS: In general, they are not precise inverses. However,

*Equilibrium and glassy Je(t — 0T) = 1/Er(t — 0™);
values are nearly inverse:

*For intermediate times, t. Je(t — o00) = 1/E.(t — o0), but
the error in assuming that

they are inverse is typically only Je(t) x Er(t) # 1.

a few per cent at most...



Linearity of Response
(an Idealization)

If creep response to stress jump og is

e(t) = Je(t) X op,

then the creep response to stress jump ¢ X og
(where ¢ is a proportionality constant) is

e(t) = Je(t) x (¢00).

NOTE: similar linear scaling of stress relaxation response applies.



Superposition of Loading

Suppose that the stress history input consists of a sequence of stress jumps,
Ac;, applied at successive times t,, with t,=0:

o(t) A

A('_Tz

AG]

THEN, the resulting strain history is given by

e(t) Acg Je(t) + Aoy Jo(t —t1) + Aoo Je(t —t2) + ...

Z AO‘ch<t — tj)
7=0



Special Case: Load/Unload

INPUT:




Correspondence Principle

*Suppose that a given load, P, produces displacement vector u(x)
in a linear elastic body having Young’'s modulus E.

*The displacement vector depends on the position vector
x=xe,tye tze,

*The magnitudes of the displacement and strain components are
proportional to P and inversely proportional to E.

EXAMPLE: Three-point P
Mid-span bending:
PL3
A=—v(xr=L/2)= Y
( /2) A8]FE F~ -k ---"




Correspondence Principle

*Now suppose that a given load jump, P(t),

is applied to a geometrically identical linear viscoelastic body

having creep function J(t).

*All stress components in the body are time-independent, and spatially
vary precisely as they do in an identical linear elastic body subject

to the same load.

*The loading produces time-dependent displacement vector u(x,t)

and corresponding strain components.

*The magnitudes of the displacement and strain components are
proportional to both P and J_(t).

EXAMPLE: Three-point P
Mid-span bending:
PL3
A(t) = — = L/2,t) = —— X Je(t
(t) vz =L/2,t) = o X Je(t) — | .
: A
For suddenly-applied load, ! L !

replace “1/E” with “J_(t)" in
an elastic solution.



Correspondence Principle

*Suppose that a given displacement jump, A(t),

is applied to a geometrically identical linear viscoelastic body

having stress relaxation modulus E.(t).

All displacement and strain components everywhere in the body are
time-independent, and precisely equal those in an identical

linear elastic body subject to the same applied displacement.

*These boundary conditions produce time-dependent loads, P(t), and stresses
*The magnitudes of the time-dependent load and of the

stress components are proportional to both A and to E(t).

EXAMPLE: Three-point P
Mid-span bending:
4381
P(t):FxAfo,«(t) f______Y _____ >
For suddenly-applied displacement, } L A }

replace “E” with “E.(t)” in an elastic
solution.



