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Introduction To Linear Elasticity

e Elastic materials have a reference shape to which they
will return if the forces applied to them are removed
(provided the forces are not too large).

o An elastic material is one in which the stress arises
in response to the change in shape, that is the strain
¢, that the body has undergone from its reference
configuration.

e [ he stress is independent of the past history of strain,
as well as the rate at which the strain is changing with
time.



e [ he behavior of an elastic material under isothermal
conditions is desribed by a constitutive equation of the
form

oi; = 5;;(epr), o =8(e€).

e For a linear elastic material the symmetric tensor
valued function &(¢) is linear in its argument:

Gij(ew) = ) Cijricrss, () =Cle].
k1l

The stress components are linear functions of the in-
finitesimal strain components. The fourth-order ten-
sor C which linearly maps the second order tensor ¢ to
the second order tensor o, is the called the stiffness
tensor. The 3% = 81 constants C;jkt are called the
elastic moduli.



e An elastic material does not dissipate energy.

e [ here exist a scalar valued function of the strain e,
W(e)

called the strain energy density per unit reference
volume, such that the stress o;; is the derivative of
Wi(e); that is
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Expanding the strain energy function W{¢) about the un-
deformed state, ¢ = o, we have

W(e) = W(o)+ Y o 4 2y

}j ezj ? ?k: l

82W (o)
8633 8 €Ll

—— it

W(o) =0 No strain energy at zero strain

14
Oij,residual — 8;'-3) Residual stress at zero strain, neglect
iJ
%W
Ciikl = & Elastic moduli — constants; 3% = 81!
861;3'86“

Thus, for a linear elastic material,the strain energy den-
sity function W is quadratic in €:
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these symmetries reduce the number of independent elas-

tic constants to 21.



Now,
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That is,
= > Cijki €kis
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which, as noted before, is the constitutive equation for
a linear elastic solid. The stress components are linear
functions of the infinitesimal strain components.



Constitutive equation for a linear elastic solid:

oi; =Y Cikick, o =C]€],
Y,

‘The elastic moduli C;;;; possess the symmetries

Ciiki = Crlijs

Cijki = Cjiki

Ciikt = Cijik-
For the most general linear elastic material there are 21
Independent elastic moduli C, ;.



The stiffness tensor C is said to be positive definite if

> Cijki€ijer >0, forall e#o

i,9.k,1
We assume that the C is positive definite. Physically,
we assume that the strain energy density W is positive
valued, whenever the strain is non-zero. In this case the
stress-strain relation

oij = Y CiikiCki
P,

IS invertible, such that

€ij = D SiikiCki-
k1

The fourth order tensor & is called the compliance ten-
SOr.



MATERIAL SYMMETRY

Most solids exhibit symmetry properties with respect to
certain rotations of the body, or reflection about one or
more planes. The effects of these symmetries is to reduce
the number of elastic constants from the number 21 for
the most general anisotropic material.



Recall that if o;; = e; - ce; and J,Ej = e - oe;. are the
components of the stress tensor o with respect to the

two bases {e;} and {e;}, then o7. and o;; are related by
ol =Y QikQ1%k-
k.l

This is the tensor transformation law for 2nd-order ten-
SOrs.

If ;5.1 and ngkt are the components of the compliance
tensor & with respect to the two bases, then they are re-
lated by the tensor transformation law for 4th-order ten-
SOrs

zjkl_ Z szqurile pgrs
r.q,7,8

Note that these ransformation laws hold for all orthogonal
matrices [(].



It for some [@] the values of the compliance coefficients in
the primed system are the same as those in the unprimed
system,
1
Siikt = Sijkls
or equivalently,

Siiki = Y. QipQ;qRkrQisSpars;

p'}q}'rﬁs
that is if the material properties in the two bases have
the same values, then [@Q] is called a symmetry trans-
formation.



Isotropy

A material is said to be elastically isotropic if its elas-
tic modulii are invariant with respect to all orthogonal
transformations. That is,

S?',jkl: Z Qz’ijqrileSpqrs

p!Q?T?S
holds for all orthogonal matrices [Q)].



Working out the details, it may be shown that an isotropic
linear elastic material has only two 2 independent elas-
tic constants, and that we may write the strain-stress
relation €;; = > k1 S;k10k1 in Matrix form as
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with

§=2(S1111 — S1122) .



Physical Interpretation of Elastic Moduli For an
Isotropic Material

(611 \ S1111 S1122 S1122 0 0 0\ (011\
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Consider a uniaxial stress situation ¢11 # 0, all other ¢;; = 0. Then

€11 = 81111011, €22 = €33 = S1122011.

Defining the Young’s Modulus, E, and the Poisson’s ratio, v, by

a1l . €22 €33
= —, and = —" = —,
€11 €11 €11
we have
1 S1122
F = , and v =-— .
S1111 S1111



Next consider a pure shear stress g1 7%= 0, all other g;; = 0. Then

2(14+v
2e12 = 2(S1111 — S1122) 012 = %012
Then, defining the Shear Modulus, G, for an isotropic material by
= agi12
- 2e12’
we have
K
G= ————
2(1 4+ v)
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This strain stress relation may be written in indicial no-
tation as

(14 v) v
CGj = % Zk:%k 034

where the two-independent elastic constants are the Young’s
modulus, F, and the Poisson’s ratio v.

The shear modulus G for an isotropic elastic material is
given by

¥

“ 2(1+v)




Next consider a state of hydrostatic pressure
011 — O9p =— 033 — —P, all other Ci5 = 0.
In this case

1-2
- “(~p), all other ¢;; =0,

€11 = €pp = €33 =
and

3(1 - 2v) 1
d €k = (—p), =D ow = —(p)
- kk 15 P 3k- kk P

The bulk modulus for an isotropic material is defined by

P Y40k mean normal pressure
" S e  volume change

Thus

E
3(1 - 2v)

K




Considerations of the positive definiteness of the strain
energy density W lead to the restrictions

1
E>0, 0<v<s, G>0, K>0.




Constitutive Relation For Linear Elasticity in terms
of F and v:

€ig % [(1 + V)O-’!._} (zkj O-kk) 5?,3]
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Constitutive Relation For Linear Elasticity in terms
of G and K:




Relations Between Elastic Constants

- K F v
G, E % Lo
G, v %fl(jj)) 2G(1 + v)
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E, v 2(111/) 3(11:321/)
E, K| 355 3 577
v, K %11;—3’1 3K(1—2v)




For metallic materials it is commonly found that

3
~N = = G =F, K ~ F.
Y73 8



Thermal strains

In the absence of stress, the strain caused by a small
change in temperature from 1y in the reference config-
uration to T in the current configuration is called the

thermal strain. These strains are expressed by the linear
relation

ey S = A;; (T —Ty)

where A;; is called the thermal expansion tensor.
For isotropic materials,

Ajj = adgy,
where « is called the coefficient of thermal expansion.



Thermo-Elasticity For Isotropic Materials

E‘chermal . (T o TO) 51;3'

17
(1 + V)Uzj (Z Ukk) 533]
k

mechanlcal
]

For the case of both an application of stress and a change
in temperature, the thermo-elastic strains in a linear the-
ory are written as

o mechanical thermal
€ij = €; + €;



Hence,

1
€ij = 4 [(1 +v)o;; —v (Zk: Uk-k:) 5@;;] + o (T — Tp) 65,

which can be easily inverted to give

_FE - v o (14v) N
Ci3 — (1—|—l/) [633 + (1 —21/) (Ek: Ek‘k‘) 53} - (1 _QV)Q(T_TO) 533




Failure/Yield Condition

In addition to the small displacement gradient and small
temperature change restrictions in the theory of linear
elasticity, we need to also explicitly introduce a failure cri-
terion which bounds the levels of stresses beyond which
the constitutive equation for isotropic linear elasticity is
no longer valid.

For isotropic materials, a simple statement of a failure
condition is

f(O') <_: Tfy

where f(o) is a scalar-valued function of the applied stress
o, and the scalar number o is a material property called
the strength of the material.



Isotropy requires that the dependence on o in the func-
tion f(o) can only appear in terms of its invariants,

f(invariants of o) < oy.

or equivalently, in terms of the principal values of the
stress,

f(o1,00,03) <oy.

For ductile metallic polycrystalline materials, ‘“failure’” of
the elastic response occurs when dislocations move large
distances through the crystals of a material to produce
significant permanent deformation. Thus, for metallic
materials the ‘“failure criterion’ is actually a ‘vield crite-
rion.”



It has been found experimentally that for the vyielding
mechanism in metallic materials the vield function
f(invariants of &) may be approximated as

f(invariants of ) = f(o1,02,03) = T,

where

- \/(3/2) 2033 ?,3:
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is called the equivalent tensile stress.



Thus, the yvield condition for ductile metallic materials
may be written as

5§0y,

where o is the tensile yield strength of the material.

This vield condition was first proposed by Richard von
Mises in 1913, and is known as the Mises yield condi-
tion, and o is called the Mises stress.

This vield condition stands for the physical notion that,
as long as the equivalent tensile stress ¢ applied on a ma-
terial is less than the material property oy, dislocations
would not have moved large distances through the crystals
of a polycrystalline material to have produced significant
permanent deformation.



The strength oy is typically identified with the 0.2% off-
set vield strength in a tension (or compression) test and
is defined as the stress level from which unloading to zero
stress would result in a permanent axial strain of 0.2%.

We will discuss failure/yield conditions for other mate-

rial classes in a later part of our study on Mechanics of
Materials.



Tresca Yield Condition

In terms of the principal stresses, the maximum shear
stress in a material at a given point is given by %(ol —03),
and as early as 1864, Henri Edouard Tresca had proposed
the vield condition

1

—lo1 —03| < T

2‘ 1 3‘ ~ Ty
for metallic materials, where 7, is the yield strength in
shear.

In general three-dimensional formulations, there are some mathemati-
cal difficulties associated with plasticity thecries based on the Tresca
yield criterion. It is for this reason that the mathematically more
tractable thecries of plasticity based on the Mises yield condition are

in more wide use these days.



SUMMARY

Limiting ourselves to isothermal situations, we record
that the three-dimensional theory of isotropic linear elas-
ticity is based on:

1. The Strain-Displacement Relations
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2. The Stress-Strain Relations

Oij = (1—_?:’!/) [65,3' + (1 _UQV) (zkj Ekk-) 51:3;] ;




subject to the vield condition
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3. The Equations of Motion

4. Plus Appropriate Boundary Conditions For Sur-
face Tractions and Displacements.



e T here is a vast amount of engineering, scientific and
mathematical literature associated with particular so-
lutions to this set of equations, obtained by using spe-
cialized analytical techniques. Since about the end of
the 1970’s, the digital computer revolution and the
associated development of the computational tech-
nique called the finite element method have made
a major change in how these equations are solved in
engineering practice.



e [ he availability of software incorporating the finite el-
ement method and other procedures for solid-modeling
and post-processing of results has placed the advanced
concepts of elasticity into the hands of a broad com-
munity of engineers.

e At the same time, it has created a necessity for them
to have a much deeper education and a strong foun-
dation in the underlying physical and mathematical
basis of the theory, so that the new computational
techniques are used properly to reliably interpret and
assess the quality of the approximate solutions they
provide.
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METALS (GPa) (GPa) (10—6/K)
Tungsten W 397 0.284 153 4.3 — 4.7
Molybdenum Mo 327 0.30 116 4.9
Chromium Cr 243 0.209 117 6.2
Iron Fe 210 0.279 82 10.6—12.8
Nickel Ni 193 0.3 75 12.5
Copper Cu 124 0.345 45 16.5
Titanium Ti 106 0.345 39 8.6
Zinc Zn 92 0.29 37 30.0
Silver Ag 81 0.37 29 20.0
Gold Au 78 0.425 28 13.0
Aluminum Al 71 0.34 27 23.2
Tin Sn 53 0.375 19 23
Magnesium Mg 44 0.28 17 26.1
ead Pb 16 0.44 5.4 29.3



g X
CERAMICS (GPa) (GPa) (107°/K)
Diamond 1128 0.18 451 1.2
Metal-bonded Tungsten Carbide
94 WC, 6 Co 580 0.26 230
Self-bonded Silicon Carbide
00 SiC, 10 Si 410 0.24 165 4.3
Sintered Alumina
100 Al,O4 350 0.23 142 8.b
Hot-pressed Silicon Nitride
96 SizNy4, 4MgO 310 0.25 124 3.2
Low-expansion Glass Ceramic
2 (Ti, Zr) Oy, 4 LiLO
20 Al, O3, 70 SIO5 87 0.25 35
Soda-Lime Glass
13 Na,O, 12(Ca, Mg)O,
72 SiOs5 73 0.21 30 8.b
Vitreous Silica 100 SiO»p 71 0.17 30
Low-expansion Borosilicate Glass
12 B>O3, 4 NaxO, 2 Al»O3, 80 SiO; 66 0.2 27.b 4.0
Machineable Glass Ceramic
65 Mica, 3b Glass 64 0.26 25
High-density Molded Graphite Q 0.11 4



E v G o

POLYMERIC MATERIALS (GPa) (GPa) (10—6/K)
Polymethylmethacrylate
PMMA -125°C 6.3 0.26 2.5

25°C 3.7 0.33 1.39 b4-72
Polystyrene
PS 25°C 3.4 0.33 1.28 70-100
Polyethylene
(low density) 25°C 2.4 0.38 0.87 160-190
Polycarbonate
PC 25°C 2.3 0.2 0.96
Polyethylene terephthalate
PET 25°C 2 0.3b 0.74
Polyamide (nylon)
PA 25°C 2.8 0.4 1.0 80-95
Vulcanized Natural Rubber
VNR 265°C 0.0016 0.499 0.0005 600
Polyurethane Foam Rubber
EUFR 25°C 0.0005 0.25 0.0002 600



