2.002 MECHANICS & MATERIALS II
STRESS AND STRAIN, CONTINUED

© L. Anand



Tensor

In mathematics, a linear map S which assigns to each
vector a, another vector

b = Sa,

is called a tensor.

S linear means

S(aa + Bb) = oSa + 3Sb.



The components Sz-j of a tensor S with respect to an
orthonormal basis {e;|i = 1,3} are defined by the scalar
product of the vector (Sej) with e;:

With this definition, b = Sa is equivalent to

b?; — Z S@j(lj.
J

We shall write [S] for the matrix of the components §;
of a tensor S:

S11 S12 513
[S] = |S21 Soo So3
S31 S32 533



A tensor S is symmetric if

. S11 S12 513 S11 So1 531
S=S8", |51 S So3z| = |S12 S22 S32|,;
S31 S32 533 S13 So3z 533
and skew if
- S11 S12 Si3 S11 So1 531
S= -8, |S21 Soo Soz| =—|S12 S20 S32
531 S32 533 S13 So3 533

Note that the transpose of S is denoted by SI. The
transpose of the matrix of components of S is obtained
by interchanging the rows and columns of the matrix.



In our study of mechanics and materials, both the stress,
o, and strain, ¢, are symmetric tensors with components

011 012 013
U@jzez"(ﬂe;), 0] = |o21 022 o023,
031 032 033
and

€11 €12 €13
Eij:ei'(ﬁej): [€] = |e21 €02 €23
€31 €32 €33



Returning to our discussion of strain, the matrix of the
components ¢;; of the infinitesimal strain tensor ¢ is

€11 €12 €13
[e] = |e21 €2n €23
€31 €32 €33
Of the nine components listed above, only six are inde-
pendent since the strain is symmetric:

€12 — €21, €13 — €31, €23 — €32.



Written out in full, the components

8u2

€20 —
855‘2

811,1
E _ —
are called the normal strain components, and the com-

ponents

€33 —
8333

are called the tensorial shear strain components.

1 _81;,1 auz_
1273 | 5as + Bry| 2L
1 _81;,1 8u3_
€13 = 3 D25 | 81| — €31,
1 [Bus . Ous
€23 = 5 52a + 51 | = €32,



The engineering shear strain components are defined

as
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Note that the engineering shear strains are defined as
twice the magnitude of the tensorial shear strains. Beware
of this difference: it is often a source of error.



Some Simple States of Strain

Uniaxial Compression in the e direction:

u= —exjei, U] = —€Xq, U> = u3z = U, e = const

4o e e

Bodies which experience constant strain are said to be
homogeneously deformed.



Simple Shear with respect to (eq1,eo):

u=-yzpey, ul=7yx2, ux=u3z3=0, v>0

0 %0
[el]=|3 0 O
O 0O

’le:QXElQ:’Y:tanQ%Q
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Pure Shear with respect to (eq1,e5):

Y Y Y Y
U= —xre1t+—x1€, u1 = —xo, duo = —x1, uz = 0, v > 0.
221-|—2 1€2, U1 = T2 2 = 571, U3 Y

le] =

oNR O
O ONR2
o o O

Y12 =2 X €12 = 1.
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Uniform Compaction:

— A — A — A
u=——3x1e — TN e —Ta e
3“1 1+ 3 ces + 3 73€3

—A —A —A
ul = Tfﬂla up = TSEQa u3z = ?333; A>0

le] =

o oul}
C)UJ||DC)

Jho o



—Af3

—A/3



Note that in uniform compaction/dilatation the volume
change per unit original volume is given by:

V-V,
Vo

= (14 €11)(1 + e20)(1 4+ €33) — 1,

= €11 + €0 + €33, €5l << 1

It may be shown, that this expression for the volume
change always holds, whether or not shear strains are
present and whether the normal strains are equal or not.
That is, for infinitesimal deformations, the volume change
per unit original volume, the dilatation, is always given by

d ek =c€11textez=tre
k

Thus, the dilatation is given by the sum of the diagonal
components, that is the trace of the strain tensor.



The components of the strain deviator tensor € are de-
fined by

1
€ = €j — 2 (Z Ekk) 0; 4y
k

s _[1 i i=j,
W0 if i g,

iIs the Kronecker delta.

where

The tensor ¢ is called the strain deviator because it mea-
sures the strain which deviates from the dilatational part
of the strain.



Plane Strain

This corresponds to a displacement field in which ug is
zero,and uq and u, are functions of only (x1,x5):

uy = 41(x1,22), up =uo(x1,22), u3z3=0.

This restriction on the displacement field in conjunction
with the strain-displacement relations implies that in plane
strain,

€ = €(xy1,xp)
with

€11 €12 O
[€] = | €21 exp O
0 0 0



SOME SIMPLE STATES OF STRESS:

Pure tension (or compression) with tensile stress o in
the ej-direction:

011 =0, 022 =033 =012 =013 =023=0.

lo] =

O O Q
o o O
o O O




Pure shear stress r relative to the direction pair
(elaeQ):

012 =021 =T, 011 =022 =033 =013 =023 =0.




Hydrostatic pressure:

011 = 0pp =033 = —p, and o015 =013 =053 =0.
—p O O
l[o]=|10 —p O], o5y=—-pdy
O 0 —p

This is the state of a stress in a fluid at rest. The scalar
p is called the pressure of the fluid.




PLANE STRESS

033 = 013 = 023 = 0,
with the remaining stress components functions of only
(5’31:332)1

o11 = 611(x1,22), o000 =Goo(x1,x2), o012 =012(1,22).

This is the approximate state of stress in a thin sheet

lving parallel to the xz3-plane and subject to forces acting
in its plane.



STRESS DEVIATOR

The components of the stress deviator tensor o’ are
defined by

1
Ol = 045 — 3 (E}E Uk-k-) Oifs

s _[1 0 i=j,
W) 0 if i,

iIs the Kronecker delta.

where

The tensor o/ has the property that tre/ = 3, U;ck' is
zero. A tensor whose trace is zero is called a deviatoric
tensor, and ¢’ is called the deviator of o.



Change of stress components upon a
transformation of coordinates

Recall, that the component o;; = e;-0¢; is the stress com-
ponent in the :-direction associated with the j-oriented

face. Each of these components has the dimensions of
force per unit area.




Up till this point, we have considered the components of
stress oy with respect to a rectangular cartesian coordi-
nate system with origin o and base vectors {e;}. Let us
now consider a second rectangular cartesian coordinate

system with the same origin, but a different orthonormal
basis {eg},



Transformation of stresss components under a rotation
of the coordinate system.



Let
Qij =e; - e

denote the cosine of the angle between e,/ and e;, SO that
= 2_Qije;-
J

Then, the components of o with respect to the basis {e;}
are

oi; = e o€ Zlek o [ D Qae| = Q@i (es - oey)
l k.l

= > QikQ;i%i-
kol

*This equation is often used as the defining equation of a second
rank tensor.



This transformation rule may be written in matrix nota-
tion as

T

Q21 Q22 Q23
Q31 Q32 33

Q21 Q22 Q23
Q31 Q32 Q33

ag21 dg22 023
g31 032 433

!
71 0?2 T3

i ! !
0}1 12 913
C\"'r F OJ

31 3D 33

[Qll Q12 @13

[all gl12 913

[Qll Q1> Q13

Thus, the a stress tensor o will have different component
and matrix representations with respect to the different
bases {e;} and {eg}.



Principal Stresses and Principal Directions of Stress

T he components 0 = ;- 0e; are the stress components

with respect to a basis {e;|i = 1,2,3}. Since o is symmet-
ric, another orthonormal basis {e;} can be found such that

with QZJ m— ez-’ . ej:

T
egr 0 O Q11 Q12 Q13 11 G12 0O13 Q11 iz (13
o 0| = Q21 Qo Q23| |021 022 o23| |Qo1 Qo2 Q23
0 0 o3 Q31 Q32 33| |31 o030 o33 (@31 @32 @33

T he particular basis {eg} with respect to which the stress
matrix is diagonal are called the principal directions
of stress, and the corresponding stress components are
called the principal stresses. Physically, each of the prin-
cipal stresses is a normal stress acting on a plane deter-
mined by the corresponding principal direction of stress,
and there is no shear component of the traction vector
on this plane.



Recall that the traction vector t on a plane defined by a
unit normal n is given by

3
t?'{ — Z O'?;jnj.
3=1
It
3
Z O'?;jnj — O,
7=1

holds, that is when t and n have the same direction, then
o is called a principal stress, and n is the associated
principal direction of stress. The principal stresses and
the principal directions of the stress are solutions of the

eigenvalue problem

3
Z (O-Zj_o-(s?,_j‘) TZ,JZO (‘l: 1,2,3)
=1



T his eigenvalue problem may be stated in matrix notation
as

011 —C 012 013 n1 0
021 092 — 0O 023 no| = |0
031 032 033 — 0| |n3 0

The condition for this eigenvalue problem to have a non-
trivial solution for n; is

011 — 0O c12 013 3 5
det 0921 oo — O 023 = —C —I—I]_O' —120'—|—I3 — 0,
031 032 033 — 0O
where

1 5 011 912 013
Il = Zo-k:kﬂ 12 = 5 Il — Zoijaij ) 13 — det 021 022 093
k 4] 031 032 033



Since the principal stresses are determined by 14,15, I3,
and can have no dependence on the coordinate system
with respect to which we refer the components of stress,
11, I, and I3 must be independent of that choice, and
are therefore called the stress invariants.

Solutions to the cubic equation
o3+ 1162 —Ir,oc+I3=0

give the three roots (oq1,05,03), knowing which one can
determine the principal directions (n(l),n@),n(?’)) from
the eigenvalue equation.



Symmetry of the stress tensor has the important con-
seguence that there exist three mutually perpendicular
directions such that there are no shearing forces on area
elements perpendicular to these directions.

The principal directions of stress are denoted by (n(l), n2) n(3)),
and the principal stresses are denoted by (c1,05,03), and
are usually ordered such that o1 > 0o > 03.



If o1, 05, and o3 are distinct, then the (normalized) prin-
cipal directions (n(l),n(z),n(?’)) are unique and mutually
orthogonal. If these three orthogonal vectors are taken as
base vectors at x, then referred to this basis the matrix
of stress components is a diagonal matrix with elements
01, 09 and 03.

If 04 = 0o # o3, then the principal direction n(3 is
uniquely determined and n(1) and n(? are any two mu-
tually orthogonal unit vectors lying in the plane perpen-
dicular to n{3).

If 04 = 0o = o3, then any three mutually orthogonal unit
vectors are the principal directions.



The discussion of principal components and principal di-
rections for the symmetric stress tensor o holds for any
symmetric tensor A.

That is, any symmetric tensor A possesses three eigen-

values (a1,a5,a3) and an associated orthonormal set of
eigenvectors (n(l), n(2), n(3)) .

In particular, because the infinitesimal strain tensor € is a
symmetric, it possesses three eigenvalues (e1,¢e5,¢3) and
an orthonormal set of eigenvectors associated with these
eigenvalues.



Problem
(Reading Assignment:
Sections 2.4 through 2.6 of Bickford)

1. In plane stress (o33 = 013 = o003 = 0) show that if
the €] and e, axes are obtained by rotating the e;
and e, axes in a counter-clockwise direction through
an angle ¢ about the ez-axis, then

1 1 .
011 = 5(0114-022)4-5(011—022)C0529+0125m29
; 1 1 .
0oy = 5(011 + o90) — 5(011 — 092) COS20 — 012 SIN 20

1
0’5_2 — —5(011—ozz)sin28—|—012c0529.



2. From these equations deduce that

!
0o11 _

59— 2012 —

o6

1 2
—tan_l{ 712 }
2 011 — 0922

For plane stress, the directions (e’l,e’z) corresponding
to 6* are the in-plane principal axes of stress, and the
corresponding values of stress o’ll,a’zz are the princi-
pal stress components. Let us denote the maximum
(most positive) of these principal stresses by o7 and
the minimum by o¢». Show that

o1 :011+022i\/<011022>2_|_02

!
—20'12,

and that

ci»=0 when @§=0"




3. Further show that o’12 has an extremum when 8 =
8* -+ 45° and that the maximum value of 0’12 is

2
01 — 02 011 — ©22
(012)max = 5 = \/( > ) + o%z.




Solution

1. In plane stress

011 o1 O

[0‘] = |021 O22 0

0] 0O O
If ¢ and e, axes are obtained by rotating the e; and
e> axes in a counter-clockwise direction through an

angle ¢ about the ez-axis, then from Q;; = e,/
have

. ej we
cosfd sing O
{Qij} —sind cosd 0O
0 0 1



Hence

g, o, O cos@ sing 0 11 o1 O cosfé —sing 0O
b, ob, 0| = |—sin@ cosd@ 0| |eo1 o2 0| [sing cosé 0Of,
0 O O 0 0 1 0 O O 0 O 1

which gives

o1 =011 €052 0 + opp SiNZ0 + o152 25in 0 cos o,
oho = 011 SIN% 0 + 000 COSZ B — 615 25iNH COS B,
oyr = (—0o11 + 022) sinfcosb + o1o (cos2 § — sin? 9) .

Since
. D 1
sin“< g = 5(1 — CO526),

1
cos? § = 5(1 + cos26),

sin 20 = 2sin 8 cosd,



we may rewrite the preceeding equation as

1 1 .
011 = 5(011 + 002) + 5(011 — 022) €0s20 + 012 8in 20
/ 1 1 .
Oop = 5(011 + 020) — 5(011 — 092) €020 — 015 SIN 20
1
0’5_2 — —5(0’11 — 0'22) sin 26 + o172 COS 20.
2. Hence,
8 /
g;l = — (011 — 022)Sin 20 + 2015 cOS 20 = 20%,,
8 /
% — (011 — 092) SiN 20 — 20715 €COS 20 = — 20,

ot = 0 when 8 = §* = ltan_l 2012 .
12 2 011 — 022



2
Since o, = 0 when tan 26* = 712 , we have

011 — 012
(011 — 022)
2

sin 26* =

o1 = o11(6%),
_ (011—;022) n (11 ;022) 05 20" & 015 sin 26"

2
011 — 022 5
_ (011+022)_|_ ( D ) T o1

2 011 — 022 2
2
\/( 2 ) oD

(o114 022) \/ o11 —022\?% |, o
- 2 T ( 2 )+012.




Similarly,

o2 :OJQQ(Q*):
_ (011 +022) (011 —022)

> cos 260* — o1osin 26*

2
011 — 022 >
_ (o11+o022) ( 2 ) to

2 011 — 022\ 2 ’
2
\/( 2 >+012

_ (o011 +022) \/ o11 —022\?% |, o
- 2 B ( ) L




3. Since
50 _
géz _ _(on > 22) 5 00520 — 015 25in 20,

8032 ~
¥ — 0 when 8 has the value 8 dgiven by
tanof — _Lo11 —022)
2019

2
912 . T hus
(011 —022)

Recall that tan20* =

tan 20 = — cot 26*.

Using the trignometric identity tan(a+(#/2)) = — cot «,

we have
0 = 0* + (w/4).

Thus o), has an extremum when 6 = 6* £+ (7/4).



Finally, since

cos 20 = 012 = ., sin28 = 2 =
011 — 022 5 (011 — 022) 5
o] o
\/( 72 403, \/ 72)" 4 02,
we have
_ 1 L _
O'iz‘max — 0'12(9) — —5(0'11 — 0'22) sin 26 —|—O'12 COS 29,
2
G11 — 022 o
o
_ ( 2 ) 1oL
\/(011—022)2_'_02 |
> 12
or




