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1. INTRODUCTION 

Fatigue Failure is the failure of components under the action of repeated fluctu­
ating stresses or strains. The word “fatigue” was introduced in the 1840’s and 1850’s 
in connection with such failures which occurred in the then rapidly developing railway 
industry. It was found that railroad axles failed regularly at shoulders, and that these 
failures appeared to be quite different from failures associated with monotonic testing. 

Fatigue failure may be defined as a process in which there is progressive, localized, 
permanent microstructural change occurring in a structure when it is subjected to bound­
ary conditions which produce fluctuating stresses and strains at some material point or 
points. These microstructural changes may culminate in the formation of cracks and 
their subsequent growth to a size which causes final fracture after a sufficient number of 
stress or strain fluctuations. 

The adjective “progressive” implies that the fatigue process occurs over a period of 
time or usage. The occurrence of a fatigue failure is often very sudden, with no external 
warning; however, the mechanisms involved may have been operating since the beginning 
of the time when the component or structure was put to use. 

The adjective “localized” implies that the fatigue process operates preferentially at 
specific local areas, rather than homogeneously throughout the body. These vulnerable 
areas can have high local strains and stresses due to stress and strain concentrations 
caused abrupt changes in geometry and/or material imperfections. 

The phrase “permanent microstructural changes” emphasizes the central role of 
cyclic plastic deformations in causing irreversible changes in the substructure. Countless 
investigations have established that fatigue results from cyclic plastic deformation 
in every instance, even though the structure as a whole is practically elastic. A small 
plastic strain excursion applied only once does not cause any substantial changes in the 
substructure of materials, but multiple repetitions of very small plastic strains lead to 
cumulative damage ending in fatigue failure. We note that although fatigue is popularly 
associated with metallic materials, it can occur in all engineering materials capable of 
undergoing plastic deformation. This includes polymers, and composite materials with 
plastically deformable phases. Plastically non­deformable materials such as glasses and 
ceramics, in which deformations at ambient temperatures are truly elastic everywhere, 
do not fail by fatigue due to repeated stresses. However, recent data has shown that 
polycrystalline ceramics can exhibit fatigue crack growth under certain circumstances. 
Such a process is still consistent with our definition in the sense that local irreversible 
deformation at the crack tip associated with processes such as microcracking, frictional 
sliding, particle detachment and crack face wedging are involved in the fatigue process. 
Furthermore, these local mechanisms in brittle materials can give rise to macroscopic 
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behavior which is phenomenologically similar to plasticity. 

There are currently two principal methodologies for design and maintenance to resist 
fatigue failure of components, defect­free and defect­tolerant. These two approaches 
are based on the how the crack size a in a component increases with the number of stress 
or strain cycles N imposed on the component. 

1. DEFECT­FREE DESIGN AND MAINTENANCE APPROACH: 

The defect­free approach is mostly used to design small components which are not 
safety critical. 

In this approach, it is assumed that no crack­like defects pre­exist. That is, the 
initial crack size a is taken to be zero. Figure 1 shows a schematic of the behavior 
of crack size, a, versus the number of applied cycles of loading, N , for an initially 
uncracked component. The number of cycles to fatigue failure of the com­
ponent is denoted by Nf (the subscript “f ” here refers to “failure”) . The total 
number of loading cycles to failure may be conceptually decomposed as 

Nf = Ni + Np, (1) 

where Ni is the number of cycles required to initiate a fatigue crack, and 
Np is the number of cycles required to propagate a crack to final fracture 
after it has initiated. Of course, the precise boundary between these two regions 
depends on the value chosen for the “initiation” crack size, ai. 

Although the total fatigue life, within the defect­free approach, consists of an “ini­
tiation” life and a “propagation” life, fatigue “failure” is often said to have occurred 
when a crack has initiated. This simplification is adopted since usually Np � Ni; 
in such case, the “propagation” life, Np, can be neglected in comparison to the 
“initiation” life, Ni, and total fatigue life, Nf , is approximated as 

Nf ≈ Ni. 

Further, a fatigue crack in a typical engineering component is often said to have 
“initiated” when it is readily visible to the naked eye, that is ai ≈ 1mm. Of course, 
specific circumstances (e.g., “small” components) may require adoption of other, 
more appropriate, definitions of fatigue “initiation” and initiation crack size. 
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Figure 1: Schematic of crack length, a, versus number of loading cycles, N , in an initially 
uncracked component. 

The defect­free methodology is usually sub­divided into two sub­categories. 

(a)	 High­cycle fatigue: 

High­cycle fatigue is associated with local cyclic stresses which are of suffi­
ciently small magnitude so that they produce predominantly elastic straining,
 
and the resulting fatigue life exceeds ≈ 104 cycles.
 

Examples of components designed in consideration of high­cycle fatigue in­
 
clude most rotating and vibrating members. 


(b)	 Low­cycle fatigue: 

Low­cycle fatigue is associated with local cyclic stress levels which are suffi­
ciently large so that significant cyclic plastic straining occurs, and the resulting
 
fatigue life is less than ≈ 104 cycles.
 

Example applications that are designed in consideration of low­cycle fatigue
 
include core components of nuclear reactors and gas turbine engines, which 

in their lifetime may see a limited number of modestly large cyclic straining 

events associated with start­up and shut­down cycles. Other application areas 

include design of many ground vehicle components which are occasionally 

subjected to overloads sufficient to cause local yielding at notch roots, etc. 
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2.	 DEFECT­TOLERANT DESIGN AND MAINTENANCE APPROACH: 

If the potential costs of a structural fatigue failure in terms of human life and dollars 
is very high, then the design of such engineering components and structures is often 
[more conservatively] based on: 

(a) The assumption that all fabricated components and structures contain a pre­
existing population of cracks of an initial size ai. This initial size should be 
taken to be the larger of (i) the largest actually­detected initial crack, and 
(ii) the detection­limit crack size, ad, which is the largest crack size that 
can escape detection by the adopted non­destructive testing (NDT) method. 
Because it is assumed in this approach that a crack pre­exists, Ni = 0, and 
therefore Nf = Np. See Figure 2. 

(b) The requirement that none of the population of assumed pre­existing cracks be 
permitted to grow to a critical size during the expected service life of the part 
or structure. Normally, this requires the selection of inspection intervals 
within the service life. In application of such defect­tolerant strategies, it is 
also assumed that the initial location and orientation of the [typically not 
actually detected] defect is the “worst possible”; that is, that it occurs at the 
point of highest cyclic stress, and is oriented perpendicular to the cyclic tensile 
stress range at that location. 

Figure 2: Schematic of crack length, a, versus number of cycles, N , in a component with 
an initial crack size ai. The initial crack size is typically taken to be the largest crack 
size, ad, that can escape detection by NDT techniques. 

The major aim of the defect­tolerant approach to fatigue is to reliably predict 
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the growth of pre–existing cracks of specified initial size, ai, shape, location, and 
orientation in a structure subjected to prescribed cyclic loadings. Providing this 
goal can be achieved, then inspection and service intervals can be established such 
that cracks should be readily detectable well before they have grown to near critical 
size, ac. 

The defect­tolerant approach to fatigue is typically used in the design and mainte­
nance of large, fabricated structures such as aircraft, ships, pressure vessels, etc., 
where welds are likely sites for initial defects, and the large size of the components 
may permit substantial subcritical crack growth, so that the enlarged defect can be 
detected and repaired or replaced well before it reaches a critical dimension. Defect­
tolerant strategies are also appropriate to safety­critical applications of components 
of arbitrary size. 

Within the scope of a defect­tolerant approach, two sub­approaches may be identi­
fied. One of these is termed fail­safe design. In this case, the basic concept is that 
a structure should possess a sufficient redundancy of elements or components to 
provide assurance that, for a specified operating load, the failure or fracture of any 
single element or component will not lead to catastrophic failure of the structural 
assembly. The implementation of this approach may require a very high degree of 
conservatism in design. 

A somewhat less conservative defect­tolerant approach may be termed safe­life 
design and maintenance. In this approach, the basic premise is that, in a speci­
fied operating interval (either total operating life, or, more commonly, an operating 
interval between scheduled shut­down, inspection, and maintenance procedures), 
no pre­existing crack of specified size, location, and orientation should grow to a 
size at which a specified load would cause the element containing the crack to fail. 

In a previous handout, we have outlined major features of the defect­tolerant approach 
(see also, Dowling text, Chapter 12). In the following sections we discuss the experimental 
foundations on which the defect­free approach to design against fatigue failure is based, 
and outline some details of how the approach is actually implemented. 

In practice, defect­free fatigue is characterized by three basic entities whose interac­
tions and connections comprise the field. These three entities are: 

1. 	 the cyclic stress history at the critical location; 

2. 	 the corresponding history of cyclic strain, where the cyclic strain is, in general, the 
sum of both cyclic elastic and cyclic plastic parts; and 

3. 	 the number of cycles of the cyclic loading leading to the initiation of a representative 
“initiation crack size”, ai; within the defect­free methodology, this is equated with 
the fatigue failure life. 
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The pairwise connections between cyclic stresses and cyclic strains are summarized 
by a so­called cyclic stress­strain relation; functional forms for these connections will 
be similar to those connecting stress to elastic and plastic strain in monotonic tension, 
but material parameters entering the respective “cyclic” and “monotonic’ expressions 
will differ. In traditional high­cycle fatigue, experimental connections are made between 
the fatigue life and the cyclic stressing, including a stationary mean stress. Alternatively, 
an equivalent correlation for high­cycle fatigue could be made between fatigue life and 
the cyclic elastic strain. In low cycle fatigue, the fatigue life is robustly correlated with 
the cyclic plastic strain. Finally, using the cyclic stress/strain relations, we can combine 
high­cycle and low­cycle fatigue into a single, unifying correlation of fatigue life with 
[total] cyclic strain. 

However, first we examine the similarities and differences between the monotonic and 
cyclic stress­strain response of materials. 
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Monotonic and Cyclic Stress­Strain Response: 

We have already covered many aspects of the elastic­plastic behavior of polycrystalline 
metals subjected to monotonic uniaxial tensile loading and monotonic loading followed 
by elastic unloading. Under cyclic loading conditions the stress­strain response can differ 
from the monotonic response. In this sub­section we will develop cyclic stress­strain 
relations to describ e this response. We shall see that the equations which describ e 
cyclic response bear a strong similarity to those describing monotonic response, but 
with different independent and dependent variables and different values for the material 
parameters. 

Monotonic Stress­Strain Behavior 

A stress­strain curve for monotonic uniaxial tensile loading followed by an elastic 
unloading is shown schematically in Fig. 3. The total strain � is the sum of the elastic 
strain, �e, plus plastic strain, �p: 

� = �e + �p. (2) 

Figure 3: Schematic of stress­strain behavior for monotonic loading. 

The constitutive assumption which relates the elastic strain to stress is 

σ 
�e = , (3)

E 
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� = + . 

where E is Young’s modulus, and σ is the stress. The plastic strain �p is negligibly small 
for stresses less than a certain value, σy , termed the initial yield strength. For higher 
values of σ, it is often found that a power law relation of the form 

�1/n 
�p = 

� σ 
or σ = K (�p)n , (4)

K 

connects �p and σ very well for �p ≥ .002 or so. The dimensionless material parameter 
n is called the strain hardening exponent, with typical values .01 < n .4, and ≤
the stress­dimensioned material parameter K is called the strength coefficient. Upon 
inserting equations (3, 4) into equation (2), we obtain 

�1/nσ � σ 
(5)

E K 

This equation is often referred to as a Ramberg­Osgood stress­strain relation, in 
recognition of the early proponents of this phenomenological stress­strain relation. 

It can be seen from equation (4) that the parameter (σ/K) is raised to a large power, 
1/n, and hence for (σ/K) � 1, the plastic strain is exceedingly small. Thus, there is 
often little error associated with the use of equation (5) even for stresses σ which are less 
than the initial yield strength, σy . 

At the point of fracture in a tension test, the true stress at fracture, σf , is defined 
by 

Pf
σf = , (6)

Af 

where Pf is the fracture load and Af is the fracture surface area. The true strain at 
fracture, �f , (using the assumption of incompressibility) can be expressed as 

� 
A0 

�
�f = ln , (7)

Af 

where A0 is the initial cross­sectional area. 

Since in ductile materials the plastic strain at fracture greatly exceeds the elastic 
strain, we may say that �f is essentially equal to the plastic strain at fracture. We can 
then substitute �f and σf into equation (4) to solve for K as 

σf
K = . (8)

(�f )n 
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On substituting equation (8) into equation (5) we obtain 

�1/n
σ 

� 
σ 

� = + �f . (9)
E σf 

The form (11) of the Ramberg­Osgood equation contains four material constants: E, σf , 
�f , and n. 

The monotonic properties {E, σy, σTS, K, n, σf , �f} for some representative metallic 
materials are listed in Table 1. Recall that σTS is the ultimate tensile strength, which 
is determined as the maximum point in the engineering stress versus engineering strain 
curve obtained in a standard uniaxial tension test. 

Monotonic Properties Cyclic Properties 

Material E σy σTS K n σf �f σ�y K � n� 

GPa MPa MPa MPa MPa MPa MPa 

Steel 

SAE 1020 206 262 441 738 0.19 710 0.96 241 772 0.18 
(hot rolled) 
SAE 1040 210 345 621 738 0.22 1050 0.93 386 786 0.18 
(As forged) 
Man­Ten 203 322 557 738 0.2 814 1.02 372 786 0.11 
(hot rolled) 
RQC­100 200 883 931 1172 0.06 1330 1.02 600 1434 0.14 
(hot rolled) 
SAE 4340 200 1172 1241 1579 0.066 1655 0.84 758 1434 0.14 
(Q & T) 

Aluminum 

2024­T351 73 379 469 455 0.032 558 0.28 427 655 0.065 
2024­T4 73 303 476 807 0.2 634 0.43 441 655 0.08 
7075­T6 71 469 579 827 0.11 745 0.41 524 655 0.19 

Table 1: Typical values of monotonic properties {E, σy, σTS, K, n, σf , �f}, and cyclic 
properties 

�
σy
� , K �, n�

� 
for some ductile metallic materials. 
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Cyclic Stress­Strain Behavior 

The cyclic stress­strain response of metals is usually obtained by cycling cylindrical 
specimens between certain maximum and minimum imposed axial strain levels. The 
stress­strain response observed during cyclic straining is quite different from that observed 
in monotonic straining, and, depending on the initial state of the material and the testing 
conditions, a material may (i) cyclically harden, (ii) cyclically soften, (iii) be cyclically 
stable, or (iv) soften or harden, depending on the strain range. 

Image removed due to copyright considerations.

Source: Figure 2.7 in Bannantine, Comer and Handrock. Fundamentals of Metal

Fatigue Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1990. ISBN: 013340191X. 


Figure 4: Schematic of stress­strain behavior for cyclic hardening: (a) Constant strain 
amplitude. (b) Stress response. (c) Stress­strain response. 
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Image removed due to copyright considerations.

Source: Figure 2.8 in Bannantine, Comer and Handrock. Fundamentals of Metal

Fatigue Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1990. ISBN: 013340191X. 


Figure 5: Schematic of stress­strain behavior for cyclic softening: (a) Constant strain 
amplitude. (b) Stress response. (c) Stress­strain response. 

Figure 4 schematically shows cyclic hardening behavior. The total strain, �, is 
cycled between equal and opposite limits �+ (positive) and �− (= −�+) (negative), as 
shown in Figure 4(a). The stress response to this strain cycling is shown in Figure 4(b). 
The cyclic σ­ � behavior shown in Figure 4(c) is obtained by cross­plotting Figure 4(a) 
and Figure 4(b)to eliminate “time”. As seen in Figure 4(c), the stress required to enforce 
the strain range increases on subsequent reversals — this is called cyclic hardening 
response. 

Figure 5 shows the schematic response for a material which undergoes cyclic soft­
ening. The stress required to enforce the strain excursions decreases with subsequent 
reversals. 

The underlying physical reason for materials to harden or soften during cyclic strain­
ing appears to be related to the nature and stability of the dislocation substructures in 
metallic materials. Qualitatively speaking, 

1. 	 For a material which is initially soft, say due to an annealing heat treatment, 
the initial dislocation density is low, and during cyclic plastic straining, it increases 
rapidly. This increase in dislocation density causes a cycle­dependent strengthening 
termed cyclic hardening. 

2. 	 For a material which is initially hard, say, due to prior cold­work, the initial dislo­
cation density is high, and during cyclic straining the rearrangement and annihila­
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tion of dislocation substructures causes the overall dislocation density to decrease. 
This decrease in dislocation density causes a cycle­dependent loss of strength termed 
cyclic softening. 

The cyclic stress amplitude for either type of material, often saturates to an es­
sentially constant value after a number of strain reversals. The stable cyclic behavior 
of metals can be describ ed in terms of amplitude­dependent [∼ stable] stress­strain hys­
teresis loops, as illustrated in Fig. 6. 

Image removed due to copyright considerations. 

Figure 6: Schematic of a stable stress­strain hysteresis loop. 

With respect to this figure, the quantities 

Δ�, Δ�e , and Δ�p 

denote the total strain range, the elastic strain range, and the plastic strain range, 
respectively. Referring again to 6, it is clear that the total strain range can be additively 
decomposed as the sum of the elastic and plastic strain ranges, 

Δ� = Δ�e + Δ�p, 

and that the elastic strain range, Δ�e, is related to the stress range, Δσ ≡ σmax − σmin, 
by 

Δσ 
Δ�e = ,

E 
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where E is the Young’s modulus. Let
 

Δ� Δ�e Δ�p 

�e�a ≡ 
2 

, a , and �p ,a≡ 
2 

≡ 
2 

define the strain amplitude, the elastic strain amplitude and the plastic strain 
amplitude, respectively. Then, with the stress amplitude σa ≡ Δσ/2, the additive 
decomposition of strain amplitude can be written as 

σa
�a = + �p . (10)

E a 

In order to construct a cyclic stress­strain curve, the tips of the stabilized hystere­
sis loops from comparison specimen tests at varying controlled strain amplitudes �a = �1, 
�2, �3, etc. are connected as illustrated in Fig. 7. Note that, from the symmetry about 

Image removed due to copyright considerations. 

Figure 7: Construction of a cyclic stress­strain by joining tips of stabilized hysteresis 
loops. 

the origin of the stable hysteresis loops, an identical (mirror image) cyclic­stress­strain 
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curve could be constructed from the compressive tips of the hysteresis loops, and the 
(extended) cyclic stress­strain curve would have the same symmetry in “tension” and 
“compression” as shown by monotonic stress­strain curves. 

The cyclic stress­strain curve of a material can be compared to its monotonic stress­
strain curve in order to quantitatively assess cyclically­induced changes in mechanical 
behavior, as illustrated schematically in Fig. 8. 

Images removed due to copyright considerations. 

(i) (ii) 

Figure 8: (i) Schematic comparisons of monotonic and cyclic stress­strain curves illus­
trating (a) cyclic softening, (b) cyclic hardening, (d) cyclically stable, and (d) mixed 
behavior. (ii) Monotonic and cyclic stress­strain curves for selected materials. 

With respect to a cyclic stress­strain curve, the quantity σy
� defines a cyclic yield 

strength (corresponding to a cyclic plastic strain amplitude of �p = 0.002). And in a a 

manner analogous to that for the monotonic stress­strain curve, a constitutive connection 
between the cyclic stress amplitude, σa, and the cyclic plastic strain amplitude, �a, can 
be given in power­law form, similar to equation (4), by 

�p 
a = 

��1/n� σa 

K � , or σa = a)
n�K � (�p , (11) 

where K � is the cyclic strength coefficient and n� is the cyclic strain hardening 
exponent. Substituting equation (11) into equation (10), the cyclic stress­strain curve 
may be summarized by 

σa 
� σa 

�1/n 
�a = + . (12)

E K � 
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Typical values of the cyclic properties 
�
σ� , K �, n�

� 
for some metallic materials are listedy 

in Table 1. The value of n� varies between 0.1 and 0.2, with an average value very close to 
0.15 = n�. In general, metals with high monotonic strain hardening exponents (n > .15) 
will cyclically harden, while those with low monotonic exponents (n < .15) will cyclically 
soften. With regard to these last observations, it is perhaps appropriate to note also that 
initially soft materials often have high monotonic strain hardening exponents (n > .15), 
while initially hardened materials are often unable to display much additional hardening 
under monotonic deformation, and thus have low monotonic strain hardening exponents 
(n < .15). 

As is clear from Fig. 8, it is important to note that a material which cyclically softens 
will have a cyclic yield strength lower than the monotonic yield strength. This points to 
a potential danger of using monotonic properties to predict cyclic strain amplitudes. For 
example, monotonic properties may predict that the strain amplitudes are fully elastic, 
when in fact the material may experience strain amplitudes with a substantial plastic 
component. As we shall see shortly, this can lead to severe consequences in terms of life 
predictions in fatigue. 
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Defect­Free Approach: 

> 
1. High­Cycle Fatigue, Nf ≈ 104 Cycles: 

Consider a cylindrical specimen under the action of a time­varying axial stress 
history, σ(t), as shown schematically in Figure 9. 

Figure 9: Fatigue testing under constant amplitude stress cycling. 

With respect to this figure, the quantities 

Δσ =	σmax − σmin, 
Δσ 

σa = , and	 (13)
2 

1 
σm = (σmax + σmin )

2 

are called the stress range, the stress amplitude, and mean stress, respectively. 

In what follows we shall first examine the relationship between the stress amplitude 
σa and the fatigue life Nf in the absence of a mean stress (i.e., when σm = 0), and 
then modify the relation for situations when a non­zero mean stress is present. 

In the high­cycle fatigue regime, the stress amplitude σa is typically below the 
cyclic yield strength σ� of the material. The stress amplitude σa versus fatigue life y 

Nf data obtained from conducting experiments at various values of σa are often 
plotted on semi­log scales, and are called S­N curves (S for Stress amplitude; N 
for Number of loading cycles to failure). Figure 10 and Figure 11 show S­N curves 
for the aluminum alloy 7075­T6 and for A517 steel, respectively. 
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Image removed due to copyright considerations. 

Figure 10: Stress amplitude σa versus the number of cycles to failure Nf for a 7075­T6 
aluminum alloy plotted on a semi­logarithmic scale. 
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Image removed due to copyright considerations. 

Figure 11: Stress amplitude σa versus the number of cycles to failure Nf for an A517 
steel plotted on a semi­logarithmic scale. 

Note that the S­N curve for the A517 steel exhibits a stress amplitude level σe below 
which the material has an apparently “infinite” fatigue life. The magnitude of the 
stress amplitude σe is called the endurance limit for the steel. Most ferritic 
and martensitic steels exhibit an endurance limit. 

The 7075­T6 aluminum alloy, like most other non­ferrous alloys, does not show 
a true endurance limit. However, for engineering purposes a pseudo­endurance 
limit for non­ferrous materials is often defined as the stress amplitude correspond­
ing to a “long” fatigue life of 5 × 106 cycles. 

There is an important empirical relationship between the endurance limit, σe, for 
wrought (not cast!) steels, and the ultimate tensile strength σTS for the ma­
terial, which is obtained less­expensively from a monotonic tension test. As shown 
in Figure 12, 

�
0.5 × σTS σe ≈ 
100 ksi ≈ 700 MPa 

if 

if 

< 
σTS ≈ 200 ksi or 1400 MPa, 

σTS > 200 ksi or 1400 MPa. 
(14) 

In 1910, Basquin1 observed that the σa versus Nf data could be effectively lin­
earized on log­log axes. A schematic plot of log σa versus log(2Nf ) is shown in 
Figure 13, where 2Nf is the number of reversals to failure. Note that there 

1Basquin, O. H.,“The Exponential Law Of Endurance Tests,” Am. Soc. Test. Mater. Proc., 10, pp. 
625­630, 1910. 
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Image removed due to copyright considerations.

Source: Figure 1.4 in Bannantine, Comer and Handrock. Fundamentals of Metal 

Fatigue Analysis. Englewood Cliffs, NJ: Prentice-Hall, 1990. ISBN: 013340191X. 
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predictions of any “finite” high­cycle fatigue life. Instead, typical practice is to use 
the S­N curve, along with a desired high­cycle fatigue life, to identify an associated 
“ideal” value of stress amplitude. Then, the design value of the cyclic stress am­
plitude in the structure is reduced from this “ideal” value by a safety factor, often 
in the range of a factor of 2. 

Figure 13: Schematic plot of stress amplitude σa versus reversals to failure (2 Nf ) for the 
high­cycle fatigue regime; log­log axes. 

As mentioned previously, in the high­cycle fatigue regime, the stress amplitude σa 

is typically below the cyclic yield strength, σy , of the material, and this produces 
small stabilized hysteresis loops, Figure 14. The area within the loop is the energy 
per unit volume dissipated as plastic work during a cycle. In the high­cycle regime, 
this energy dissipation (loss) is small, and it decreases rapidly as the stress am­
plitude decreases. However, if the imposed stress amplitude increases beyond the 
cyclic yield strength σy

� , then the cyclic plastic strain amplitude and the width of 
the stabilized hysteresis loops rapidly become large, and the resulting fatigue life 
typically decreases to below ≈ 104 cycles. We discuss the case of low­cycle fatigue 
next. 
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Figure 14: Schematic of a small hysteresis loop produced in the high­cycle regime when 
the stress amplitude σa is typically less than the monotonic yield strength σy of the 
material. 

< 
2. Low­Cycle Fatigue, Nf ≈ 104 Cycles: 

Figure 15 shows a schematic of a hysteresis loop in the low­cycle regime. With 
respect to this figure, the quantities 

Δ�, Δ�e , and Δ�p 

denote the total strain range, the elastic strain range, and the plastic strain 
range, respectively. Again, 

Δσ 
Δ� = Δ�e + Δ�p, with Δ�e = ,

E
 

where Δσ is the stress range, and E is the Young’s modulus. Let
 

Δ� Δ�e Δ�p 

�e �p�a = , a = , and = ,
2 2 a 2 

denote the strain amplitude, the elastic strain amplitude and the plastic 
strain amplitude, respectively. Then, as before, 

σa
�a = + �p . (16)

E a 

In the mid­1950’s, Coffin2 and Manson3 independently established a power law 
correlation for the low­cycle fatigue life, Nf , with the cyclic plastic strain amplitude, 

2Coffin, L. F.,“A study of the Effects of Cyclic Thermal Stresses on a Ductile Metal,” Trans ASME, 
76, 1954, pp. 931 ­ 950. 

3Manson, S. S.,“Behavior of Materials under Conditions of Thermal Stress,” Heat Transfer Sympo­
sium, University of Michigan Engineering Research Institute, 1953, pp. 9 ­ 75. 
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Figure 15: Schematic of a large hysteresis loop produced in the low­cycle regime when 
the stress amplitude σa is typically larger than the monotonic yield strength σy of the 
material. 

�p 
a, as shown in Figure 16. The straight line on this log­log plot has the equation 

�p = ��f (2Nf )
c . (17)a 

The material parameters �� and c are the low­cycle fatigue properties for a material. f 

They are called the fatigue ductility coefficient and the fatigue ductility 
exponent, respectively. Numerical values of the fatigue ductility exponent are 
usually in the range − .7 for many metals, with c = .6 as typical. Note.5 ≥ c ≥ − −
that this dependence of low­cycle fatigue life on plastic strain amplitude, when 
inverted, is more robust than in the case of high­cycle fatigue, leading to 

�1/c �−5/3� 
�p 

� 
�p � 

�� 
�5/3 

f
2Nf = a . a = 

�p .= 
f �� a�� f 

In low­cycle fatigue, fatigue life is proportional to plastic strain amplitude to the 
inverse ∼ 1.67 power. This level of sensitivity is sufficiently small so that small 
differences in �p (from those assumed) lead to meaningfully small differences ina 

resulting predictions of low­cycle fatigue life. 
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Figure 16: Schematic plot of strain amplitude �a versus reversals to failure (2Nf ) for 
low­cycle fatigue on log­log axes. 

3. Strain­Life Equation for both High­Cycle and Low­Cycle Fatigue: 

We can now combine the equation of the cyclic strain amplitude, equation (16) 
with the fatigue life correlations for the high­cycle regime, equation (15), and for 
the low­cycle regime equation (17) to obtain 

σ�f
�a = (2Nf )

b + �f
� (2Nf )

c . (18)
E� �� � � �� � 

Equation (18) is the basis for the strain­life approach to design against 
fatigue failure. The strain­life equation is shown schematically in Figure 17 as 
being asymptotic to the two straight lines corresponding to equations (15) and (17) 
at long and short lives, respectively. 

Also indicated in Figure 17 is the transition fatigue life, 2Nt. It is the life at 
which the cyclic elastic strain range equals the cyclic plastic strain range. Dividing 
(15) by E to obtain �e and setting this equal to �p 

a, equation (17), we obtain that a 
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Figure 17: Schematic plot of elastic, plastic and total strain amplitudes versus reversals to 
failure (2Nf ). The transition number of reversals at which the elastic strain amplitude 
equals the plastic strain amplitude is denoted by (2Nt). Shapes of hysteresis curves in 
relation to the strain­life curve are also shown. 

the transition fatigue life is given by the expression 

1 � 
E �� 

� 
(b− c)f

2Nt = . (19)
σ�f 

At short lives, 2Nf < 2Nt, plastic strain will predominate, and ductility will control 
the fatigue performance. At long life, 2Nf > 2Nt, the plastic strain will be far 
smaller than the elastic strain, and strength will control the fatigue performance. 

It is important to take note of the tradeoffs inherent in material selection to design 
against high­cycle and low­cycle fatigue. An examination of the tables shows that, 
as a general trend, the fatigue strength coefficient, σ� correlates positively with f 

measures of a material’s resistance to monotonic plastic deformation such as ten­
sile yield strength, σy , or hardness; consequently, standard approaches to improving 
high­cycle fatigue performance have involved material compositions and processing 
means to increase strength, including use of alloying elements, heat­treating, and 
special surface­hardening treatments (e.g., carburizing, nitriding, etc.). However, 
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we recall from our previous examinations of elastic­plastic materials that, in gen­
eral, increases in strength are invariably accompanied by decreases in ductility, or 
monotonic true strain at fracture. And these associated reductions in the material’s 
ability to undergo plastic deformation without fracture under monotonic loading 
also manifest themselves in a corresponding decrease in its fatigue ductility coeffi­
cient, �f

� . Reduced values of the latter material property mean that lower fatigue 
lives will result from application of any given value of plastic strain range, �a. This 
trend in overall strain amplitude/fatigue life response, as a function of hardness in 
various quenched and tempered states of alloy steel 4142 are shown in the table 
below. 

Brinnell Hardness σ�f b ��f c 
(HB) (MPa) 

670 (as­quenched) 2550 ­0.0778 0.0032 ­0.436 
560 2410 ­0.121 0.0732 ­0.805 
450 1937 ­0.0762 0.706 ­0.869 

Table 2: Typical values of fatigue strength and ductility properties for differing tempers 
(and hence hardnesses) of quenched and tempered 4142 steel. 
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Endurance Limit Strain­Life Properties 
Material σe σ�f b ��f c 

MPa MPa 
( Nf = 5 × 106) 

Steel 
SAE 1020 152 896 ­0.12 0.41 ­0.51 
(hot rolled) 
SAE 1040 173 1540 ­0.14 0.61 ­0.57 
(As forged) 
Man­Ten 262 1089 ­0.115 0.86 ­0.65 
(hot rolled) 
RQC­100 403 938 ­0.0648 0.66 ­0.69 
(hot rolled) 
SAE 4340 492 1655 ­0.076 0.73 ­0.62 
(Q & T) 

Aluminum 

2024­T351 151 1100 ­0.124 0.22 ­0.59 
2024­T4 175 1015 ­0.11 0.21 ­0.52 
7075­T6 176 1315 ­0.126 0.19 ­0.52 

Table 3: Typical values of fatigue properties 
�
σe, σf

� , b, �f
� , c

� 
for some ductile metallic 

materials. Note that the “endurance limit” σe in this table is is a pseudo­endurance limit, 
which is calculated from Basquin’s relation for a life of Nf = 5 × 106 cycles. 
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Mean Stress Effects on Fatigue 

The preceding section describ ed relations between stress, plastic strain, and total 
strain amplitudes and the corresponding fatigue life under conditions of fully reversed 
loading with zero mean stress. We take the mean stress associated with a cyclic loading 
between stress limits σmax and σmin to be σm = (σmax + σmin)/2, with cyclic amplitude 
σa = (σmax − σmin)/2. Mean stress effects on fatigue life are most important at long lives, 
where cyclic plastic straining is small. At low lives, with significant plastic straining, 
mean stresses quickly relax out under strain­controlled limits, or lead to cyclic ratcheting 
and “run­away” if it is attempted to enforce unequal stress limits. Although many design 
approaches have been proposed to account for long­life mean stress effects on fatigue, we 
will adopt the assumption that a tensile mean stress, σm > 0, will correspondingly reduce 
the effective fatigue strength coefficient of eq. (15). The modified form of the Basquin 
relation then becomes 

σa = 
�
σf
� − σm

� · (2Nf )
b; (for σm > 0). (20) 

When this equation is inserted into eq. (18), the governing equation for the strain­life 
approach is as 

σf
� − σm 

�a = ( ) · (2Nf )
b + �� · (2Nf )

c , (21)
E f 

The effect of a positive mean stress on the strain­life curve is to reduce the long­life 
asymptote by σm/E. If the mean stress was compressive, σm < 0, then the use of eq. (21) 
rather than eq. (18), would predict that the long­life fatigue behavior would considerably 
exceed that obtained under conditions of zero mean stress. While there are indications 
that this interpretation of the “beneficial” effects of compressive mean stress on long­
life fatigue performance has a degree of validity, a conservative approach would be to 
continue to use eq. (18) rather than eq. (21) (and eq. (15) rather than eq. (20)) in those 
cases where σm is negative. 
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Cumulative Fatigue Damage 

The strain­life relations developed in the preceding sections are for constant ampli­
tude straining throughout the fatigue life of the member. In order to apply information 
of this type to the analysis of the fatigue behavior of structural elements which are sub­
jected to other than uniform cyclic straining, it is necessary to develop a formalism for 
generalization of constant amplitude life data to variable amplitude loading. 

The earliest, and still most successful, such generalizing concept in defect­free fatigue 
analysis is that of cumulative fatigue damage, first introduced by Palmgren and by Miner. 

In order to motivate the procedure, consider a simple two­stage cyclic straining history 
consisting of n1 cycles of strain amplitude �a(1), followed by application of a different strain 
amplitude, �a(2), until failure occurs. We wish to determine the number of cycles, n2, of 
the second strain amplitude which can be applied before fatigue failure occurs. 

Let Nf1 be the number of cycles to failure for constant amplitude straining �a(1). 
Obviously, in the present problem the parameter 

n1
d1 ≡ (22)

Nf(1) 

satisfies d1 ≤ 1. We call d1 the “damage” which the material has undergone during the 
application of the first loading block. We generalize this concept of damage and denote by 
“di ” the damage associated with the “i­th” portion of the loading history, consisting of ni 

cycles of strain range Δ�i (strain amplitude �a(i). Under constant amplitude conditions, 
this strain range would result in a fatigue life of Nf(i) cycles (or 2Nf(i) reversals). The 
“i­th” damage increment is then defined by 

ni 
(0 ≤ di ≤ 1). (23)di ≡ 

Nf(i) 

The theory of linear cumulative fatigue damage assumes that fatigue failure occurs 
when 

ni
� 

di = 
� 

= 1. (24)
Nfi i i 

(Note that the application of eq. (24) to any constant amplitude history will trivially 
reproduce the baseline strain­life curve, as it should.) 
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In our example problem, where the number of blocks was two (2), the application of 
eq. (24) provides 

2 
n1 n2

� 
di = + = 1. 

Nf 1 Nf 2i=1 

Or, on rearranging, to solve for the unknown number (n2) of cycles of strain amplitude 
�a(2) that can be applied subsequent to the previously­applied n1 cycles of strain amplitude 
�a(1) before fatigue failure results as 

n1 
n2 = Nf 2 · [1 − ]. 

Nf 1 

One important limitation of the cumulative damage rule as presented here is that 
there is no explicit accounting for sequence effects on fatigue. That is, n2 cycles of 
strain amplitude �a(2), followed by n1 cycles of strain amplitude �a(1), would also satisfy 
eq. (24), but due to various features of the cyclic stress­strain curve, the gradual change 
(via cyclic hardening or softening) from the monotonic to the cyclic stress­strain curve, 
and other factors, there can be a block sequence effect on fatigue life. These effects can be 
accounted for to some degree in sophisticated computer­based applications of cumulative 
damage which break arbitrary loading histories into single, sequential reversals, and which 
simultaneously follow the cyclic stress­strain curve along each segment of the loading 
history. These developments are beyond the scope of this course. 
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NOTCH EFFECTS ON FATIGUE 

We have developed certain tools for implementing a defect­free fatigue life methodol­
ogy based primarily on the local strain approach to fatigue. Thus far, however, we have 
considered only small cylindrical specimens or components subjected to uniaxial cyclic 
loading. In practice, crack initiation and fatigue failure in components of more complex 
geometry are most often associated with stress concentrations arising at notches, holes, 
fillets, radii, and other necessary geometrical discontinuities. 

An intuitive notion why this should be so can be gleaned from the long­life fatigue 
behavior of a notched component. If the cyclic loadings are sufficiently small so that 
negligible cyclic plastic strain occurs within the body, we may expect that the theory of 
elasticity can be used to calculate stress, strain and displacement. 

Consider the elliptical hole of major and minor axes (2a, 2b), respectively, located 
in a large body subject to the far­field cyclic fully­reversed nominal stress amplitude Sa, 
normal to the 2a direction. The local stress amplitude occurring at the root of the notch, 
σa ≡ σa(local), can be obtained from the equations of elasticity as 

σa = (1 + 2
�

a/ρ) Sa ≡ Kt · Sa (25)· 

Here ρ = b2/a is the radius of curvature at the notch root of the ellipse, and the 
dimensionless quantity Kt ≥ 1 is the stress concentration factor. A wide variety of 
elastic stress concentration factors for practical engineering geometries can be found in 
the handbook Stress Concentration Factors, by R. E. Petersen. 

For long­life fatigue of laboratory­sized uniaxial [homogeneously­stressed] specimens, 
the Basquin stress/life fatigue correlation of eq. (15) gives: 

σa = σf
� (2Nf )

b (15a)· 

or 

f )
1/b2Nf = (σa/σ

� , (15b) 

where σf
� , the fatigue strength coefficient, and b, the fatigue strength exponent, are 

material properties, and 2Nf is the number of reversals to failure under a fully­reversed 
applied stress amplitude of magnitude σa. 

Since, as noted previously, 0 > b � −.1, typically, we see that (long) fatigue life 
is a very sensitive function of stress amplitude — proportional roughly to the inverse 
tenth power. Thus, if we imagine a small material coupon at the notch root where, from 
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eq. (25), the local stress amplitude is greater than at remote locations, it should come 
as no surprise that fatigue failure invariably starts at the stress concentration of a notch 
root. 

An operational definition of the severity of a given notch, in a given material, in 
reducing the long­life fatigue strength of the structure, Se, can be given in terms of the 
fatigue notch factor, Kf . Here Se is the fully­reversed nominal stress amplitude which 
may be applied to the notched component with a resulting fatigue life of some arbitrary, 
but specified, number of cycles. Often this “long” life (or nominal stress “endurance” 
limit) is chosen as 2Nf = 107 reversals (or Nf = 5× 106 cycles). Let Sf be defined as the 
stress amplitude resulting in the same fatigue life for the material, but in a uniaxially­
loaded specimen. From eq. (15a), 

Sf = σf
� · (107)b 

or 

f )
1/b107 = (Sf /σ

� 

The notch fatigue factor, Kf , is defined as the ratio of long life uniaxial stress 
amplitude for long­life notched stress amplitude: 

Sf
Kf . (26)≡ 

Se 

We expect that the notched fatigue strength, phrased in terms of the nominal stress 
amplitude, will not exceed the unnotched fatigue strength, and so we expect Kf ≥ 1. A 
theoretical value for Kf can be obtained by hypothesizing that: 

(a)	 in order to obtain a notch fatigue life of 2Nf = 107, the local stress amplitude at the 
notch root will be σa = Sf . 

(b) the elastic stress concentration factor Kt relates nominal stress Sa = S� to the local 
stress	σa = Sf by
 

Sf = Se
Kt · 
or 

Se = Sf /Kt. 

32 



When this last expression is inserted into eq. (26), there results the prediction:
 

K
(predicted) 
f = Sf/S� (27) 

= Sf/(Sf/Kt) 

= Kt. 

This prediction is generally good, and conservative in the sense that experimentally­
observed values for Kf satisfy Kt ≥ Kf ≥ 1. The limiting value of Kf(max) = Kt is 
generally associated with: 

(a) “higher”­strength materials, and 

(b) “larger” notch root radii, ρ. 

One notion which can help to suggest reasons why we can obtain Kf < Kt is the 
stress gradient at the notch. The highest theoretically­predicted stresses are experienced 
only by a vanishingly thin lamina of material on the surface of the notch, and material 
points in the bulk at any finite distance below the notch root experience less severe cyclic 
stressing. 

We presume that in notch fatigue, a critical value of fatigue damage must be sustained 
over material volume elements possessing some characteristic “microstructural” linear 
dimension, ρ� . This assumption can provide qualitative insight as to the dependence 
of Kf on Kt, root radius, ρ, and a “material” length­scale, ρ� . For example, higher­
strength materials are often associated with refinement of microstructural dimensions 
such as grain size, free length of dislocation segment between pinning points, etc. (recall 
the aphorism ‘smaller is stronger’ in understanding plastic resistance of polycrystalline 
metals) Thus, we might expect higher­strength materials to have generally smaller values 
of ρ� . On dimensional grounds, we also expect Kf to depend on Kt and on the ratio 
ρ�/ρ. One empirical expression for Kf which was fitted by Petersen to notch fatigue data 
for wrought steels of varying strength is: 

Kf = 1 + 
Kt − 1 

, (28)
1 + ρ�/ρ 

where the material length scale ρ� depends inversely on the monotonic tensile strength, 
σTS, according to 

σ� 

)1.8ρ� = ρ0 · ( . (29)
σTS 
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In eq. (29), the [constant] reference length ρ0 and reference stress level σ� are given 
for wrought steels by 

× 10−6ρ0 = .001 in = 25.4 m 

σ� = 300 ksi = 2070 MPa, 

and σTS is the tensile strength for the material at hand. 

Typical values for ρ� in steels of various conditions are: 

Material Condition Typical ρ� 

Annealed, normalized steels .01” = 0.25 mm 

Quenched and tempered steels .025” = 0.1 mm 

Highly­hardened steels .001” = 0.025 mm 

Returning to eq. (28)), we see that for ρ�/ρ � 1, Kf � Kt, while for ρ�/ρ � 1, 
Kf � 1. The inflection point in the curve of Kf vs. ρ�/ρ occurs for root radii ρ � ρ� . 

To summarize the high­cycle fatigue approach to notch roots in wrought steels, we 
apply the following steps: 

Step 1 Using the material’s tensile strength, σTS, calculate its characteristic length 
scale, ρ�, from eq. (29). 

Step 2 Using the theoretical elastic stress concentration factor, Kt, for the notch geom­
etry, calculate the notch fatigue factor, Kf , from its root radius, ρ, and the material 
length scale ρ�, using eq. (28). 

Step 3 Calculate the nominal stress amplitude, Sa, giving high­cycle fatigue failure of 
the notched component in Nf cycles (or 2Nf reversals) according to 

Kf Sa = σf
� · (2Nf )

b . (30) 
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Fatigue Stress and Strain Concentration Factors 

The previous discussion of notches in fatigue assumed that cyclic elastic behavior 
occurs not only remotely, in response to the nominal stress amplitude, Sa, but also 
locally (at the notch root), in response to the local cyclic stress amplitude, σa. While 
this will be true for sufficiently small amplitudes of cyclic loading, it is also possible 
for cyclic plasticity to occur. With this in mind, we introduce the (notch root) strain 
amplitude, �a, (corresponding to σa on the cyclic stress­strain curve) and the nominal 
strain amplitude, ea, analogously corresponding to Sa. We define the cyclic stress 
concentration factor, Kσ , as: 

σa
Kσ ≡ (31)

Sa 

and the cyclic strain concentration factor, K�, as 

�a
K . (32)� ≡ 

ea 

In the case of cyclic elastic deformation, both at the notch root in response to σa, 
and in the nominal stress/strain relation, 

Sa = E ea; σa = E �a, 

so that Kσ = K� = Kt. 

When the local notch fields exhibit cyclic plastic behavior, we generally find that 

Kσ < Kt; 

K� ≥ Kt. 

One means for accounting for effects of notch root plasticity is the use of Neuber’s 
rule: 

t)
2Kσ · K� = (K (33) 

Eq. (33) can be shown to be rigorously correct for certain cases of notch root elastic­
plastic behavior, as initially shown in solutions due to H. Neuber. In applications of 
this result to notch fatigue problems (anticipating notch fatigue life correlations) it is 
common to replace “Kt ” with the fatigue notch factor, Kf , giving 

f )
2Kσ · K� = (K (34) 
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or, in view of eq. (31) and eq. (32), 

(Kf )
2(σa/Sa) · (�a/ea) = (35) 

or, on further arrangement, 

ea · (Kf )
2�a = (36)σa · Sa · 

When the nominal stress amplitude is within the cyclic elastic limit, Sa < σy
� , then 

ea = Sa/E and 

Kf )
2(Sa ·

�a = . (37)σa · 
E 

We can insert the equation for the cyclic stress/strain curve, 

σa
�a = + ( 

σa 
)1/n� , (12)

E K � 

into eq. (37) to obtain 

Kf )
2σ2 + Eσa · ( σa 

)1/n� = (Sa · . (38)a K � 

For prescribed geometry, material, and loading, both Kf and Sa can be determined. 
Eq. (38) can then be solved iteratively for the resulting notch root stress amplitude, σa. 
With σa known, the notch root strain amplitude, �a, can be determined by substituting 
the value of σa into eq. (12). Finally, with the known local strain amplitude, �a, the 
notch fatigue life 2Nf is obtained from the strain life curve as 

σf
� 

�a = �� · (2Nf )
c + ( ) · (2Nf )

b .f E 

It is important to note that a critical step in the overall methodology was the use 
of Neuber’s rule in the form of eqs. (36) and (37) to obtain relations between local 
and nominal cyclic loadings. Generally, Neuber’s rule is most appropriate for planar 
geometries in generalized plane stress with root radius ρ of comparable size with sheet 
thickness t: ρ ≥∼ t. The use of Neuber’s rule for notch roots in more triaxial states 
of stress, (e.g., in planar geometries with ρ < t) is generally conservative in that the 
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notch fatigue life tends to be underestimated. A different (and easier to use) connection 
between local and nominal fields which is more appropriate for small ρ/t or for axial 
symmetry is the so­called “linear rule”: 

K� = Kf (39) 

resulting in 
�a 

= Kf (40) 
ea 

or 

�a = Kf ea. (41)· 

For elastic response to the nominal stressing, ea = Sa/E, and the linear rule gives the 
notch strain amplitude as 

Sa
�a = Kf (42)· 

E 

Notch fatigue life for this class of notches is also obtained by substituting the local 
strain �a determined from eq. (42) into the strain/life correlation of eq. (18). The cyclic 
strain determined from eq. (42) will generally be smaller than that obtained from eqs. 
(20) and (19), so that somewhat different lives are predicted. 
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