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We have emphasized that most engineering materials contain small crack­like defects, 
or they can readily develop them during service. 

If a crack exists in a structure, then the stress field in the vicinity of the crack tip is 
given by 

KI
σij(r, θ) → fij(θ) as r 0,√

2πr 
→ 

where the stress intensity factor is 

KI = Q σ 
√

πa , 

with σ the far­field applied Mode I tensile stress, a the crack length, and Q the configu­
ration correction factor. 

Under small–scale yielding, and when monotonically increasing far­field load is applied 
to the body, then a necessary condition for crack extension is 

KI = KIc, 

where KIc is a material property called the plane strain fracture toughness. 

The above criterion for fracture is deceptively simple. In practice there are problems 
associated with identifying the shape and size of a crack, with carrying out a proper 
stress analysis, and in obtaining accurate and/or valid data for KIc. Also, cracks can 
extend in a sub­critical manner, which means that a component initially thought to be 
safe against fracture may become dangerous after a period of service. Subcritical crack 
nucleation and growth can occur under constant or fluctuating loads. In the former case, 
crack extension is usually controlled by an aggressive environment which causes stress 
corrosion cracking; we shall return to a study of this phenomenon later. Subcritical crack 
nucleation and growth under fluctuating loads is called “fatigue.” It is this phenomenon 
to which we now turn our attention. 

Failure occurring from repeated fluctuating stresses or strains is called fatigue. The 
word “fatigue” was introduced in the 1840’s and 1850’s in connection with such failures 
which occurred in the then rapidly developing railway industry. It was found that railroad 
axles failed regularly at shoulders, and that these failures appeared to be quite different 
from failures associated with monotonic testing. Even then, elimination of sharp corners 
was recommended. 

The process of fatigue failure may be defined as a process in which there is progressive, 
localized, permanent microstructural change occurring in a structure when it is subjected 
to boundary conditions which produce fluctuating stresses and strains at some material 
point or points. These microstructural changes may culminate in the formation of cracks 

2




Axle

Bearing

Fatigue
Fracture

Location

Wheel

Figure 1: Schematic of rotating bending fatigue failure in railway axles. 

and their subsequent growth to a size which causes final fracture after a sufficient number 
of stress or strain fluctuations. 

The word progressive implies that the fatigue process occurs over a period of time 
or usage. A fatigue failure is often very sudden with no external warning; however, the 
mechanisms involved may have been operating since the beginning of the time when the 
component or structure was put to use. 

The word localized implies that the fatigue process operates at local areas rather than 
throughout the body. These local areas can have high strains and stresses due to abrupt 
changes in geometry and material imperfections. 

The phrase permanent microstructural changes emphasizes the central role of cyclic 
plastic deformations in causing irreversible changes in the substructure. Countless in­
vestigations have established that fatigue results from cyclic plastic deformation in every 
instance, even though the structure as a whole is practically elastic. A small plastic strain 
excursion applied only once does not cause substantial changes in the microstructure of 
ductile materials, but multiple repetitions of very small plastic deformations leads to 
cumulative damage ending in fatigue failure. We note that although fatigue is popularly 
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associated with metallic materials, it can occur in all engineering materials capable of 
undergoing plastic deformation. This includes polymers, and composite materials with 
plastically deformable phases. Plastically non­deformable materials such as glasses and 
ceramics, in which deformation is truly elastic everywhere, do not fail by fatigue due to 
repeated stresses. However, recent data has shown that ceramics can exhibit fatigue crack 
growth under certain circumstances. This process is still consistent with our definition 
in the sense that local irreversible deformation at the crack tip associated with processes 
such as microcracking, frictional sliding, particle detachment and crack face wedging are 
involved in the fatigue process. Furthermore, these local mechanisms in brittle materials 
can give rise to macroscopic behavior which is phenomenologically similar to plasticity. 

Crack­tolerant Design and Maintenance 
Against Fatigue Failures 

If the potential cost of a structural fatigue failure in terms of human life and dollars 
is very high, then the design of such engineering components and structures should be 
based on: 

1. The	 assumption that all fabricated components and structures contain a pre– 
existing population of cracks of a minimum size. This minimum size should be 
taken to be the minimum that can be reliably detected by non­destructive examina­
tion (NDE) methods. 

2. The requirement that none of these presumed pre­existing cracks be permitted to 
grow to a critical size during the expected service life of the part or structure. 
Normally, this requires the selection of inspection intervals within the service life. 

The major aim of defect­tolerant approaches to fatigue is to predict reliably the growth 
of pre–existing cracks of specified initial size (ai), shape, location and orientation in a 
structure subjected to prescribed cyclic loadings. Providing this goal can be achieved, 
then inspection and service intervals can be established such that cracks should be readily 
detectable well before they have grown to near critical size, ac. 

The accompanying figure schematically illustrates the overall approach. A structure 
is subjected to a load P which cyclically varies between maximum and minimum values, 
Pmax and Pmin, respectively. This loading causes a similar cyclic variation in the remote 
stress level, σ. The structure is assumed to have a pre­existing crack of initial size ai 

located at the most highly stressed location. The initial size can be either the largest 
pre–existing crack detected by the NDE technique used, or (if no crack was actually 
detected) the initial crack size is assigned to be ad, where ad is the minimum crack size 
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which can be reliably detected by the NDE technology employed. The latter assumption 
is the more common. 

Figure 2: Crack length a versus applied cycles of loading, N 

If crack growth occurs over a large number of load cycles, N , then crack length a would 
be observed to increase with increasing N , as shown in the figure. Failure by fracture 
would occur when the crack had reached the critical crack size, ac, and the useful service 
life of the structure would be a suitable fraction of the number of cycles required to 
propagate the crack from size ai to ac. The critical crack size can be determined, based 
on reaching the plane strain fracture toughness at the maximum cyclic stress: 

KI = Qσmax 

√
πac = KIc ⇒ 

1 
� 

KIc 
�2 

ac = . 
π Qσmax 
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Also shown in the plot of a vs. N are extrapolations to values of crack length a > ac 

and a < ai ≡ ad. These extrapolations, of course, can be realized only by changing the 
initial and final conditions. If either (or both) changes could be made, it is evident that 
an increase in the safe service life could be realized. How could such changes be made? 

First, the reduction of ai requires a reduction in the minimum reliably­detected crack 
size of the NDE procedure. An increase in ac could be obtained by raising KIc (for 
example, either by changing materials or by changing material processing). Although 
the latter option may at first seem tempting, there is far greater “pay–off ” in decreasing 
the ad of the NDE technique. The reason is that the growth rate (slope of the a vs. N 
curve) is much lower initially (a � ai) than at the end. A few percent increase in ac 

buys only a small amount of extra service life, while a similar percentage decrease in ad 

provides substantially greater increases in useful service life. 

Fatigue Crack Growth 

To obtain a fatigue crack growth curve for a particular application, it is necessary to 
establish reliable fatigue crack growth rate data. Typically, a cracked test specimen is 
subjected to a constant amplitude load cycling stress range Δσ ≡ σmax min and two − σ
curves, the crack length a versus the number of cycles, and ΔKI for that geometry of 
testing versus the crack length are obtained. Here ΔKI = Q Δσ

√
πa is the range of the 

stress intensity factor over one cycle of load, while crack length is essentially constant at 
value “a”. Note that a considerable portion of the life of the specimen is spent at short 
crack lengths. 

The crack growth rate is denoted by 

Crack growth rate ≡ da ≡ slope of crack growth 
dN 

curve at crack length a. 

≡ crack extension Δa of a crack 
of length a occurring in one cycle. 

Thus, from experimentally determined curves of a vs. N and knowledge of applied 
daloads and geometry of the test specimen we can construct 
dN vs. a and ΔKI vs. a 

curves. On cross–plotting from these curves to eliminate the variable a, we can construct 
log 

� 
da 

� 
versus log(ΔKI ) curves. 

dN 
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Figure 3: Schematic of fatigue crack growth­rate data reduction. 

Experimentally, it has been found that for a given load ratio R ≡ σmin/σmax = 
KImin 

/KImax , the plots of log 
� 

da 
� 

versus log(ΔKI ) obtained from various different speci­
dN 

men types superpose on one another to give a single curve for a given material. The fact 
that such a curve can, to a good approximation, be considered to be a material curve, 
independent of geometrical factors, is of great practical importance: the results obtained 
from simple laboratory specimens can be directly applied to real service conditions, pro­
vided the stress intensity factor range in the latter case can be determined. 

At a fixed R­ratio, the fatigue crack propagation behavior of metallic materials can 
be divided into three regimes. The boundaries dividing adjacent regimes can be specified 
either by the magnitude of the transitional growth rate per cycle or by the magnitude 
of the cyclic stress intensity factor, ΔKI . The former distinction provides more physical 
insight, especially when the growth rate per cycle is compared with other relevant metal­
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lurgical length scales such as crystal lattice spacing, mean dislocation spacing, precipitate 
and inclusion sizes and spacing, and grain size. The distinction based on the value of 
ΔKI provides insight as to which features may be encountered in a given application. 

Figure 4: Primary fracture mechanisms in steels associated with sigmoidal variation of 
Fatigue crack propagation rate (da/dN ) with alternating stress intensity facor (ΔK) 
[Ritchie, 1977]. 
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Regime A: (da/dN ) ∼ 10−8 m/cycle 

In this regime the fatigue crack growth mechanisms are non­continuum in nature, and 
usually a fatigue crack propagation threshold, ΔKIth, exists: 

ΔKIth —	 threshold value of cyclic stress

intensity factor


daAn operational definition of ΔKI th is the ΔKI corresponding to a growth rate 
dN of 

10−10 m/cycle. 

If ΔKI < ΔKIth then 

∼ 10−10 m/cycle or 
� 

da — i.e., a non­propagating crack. 
dN

� 
da 

� <	
dN 

� ≈ 0 

In Regime A (also known as the Threshold Regime) the crack growth rate is sensitive to 
the microstructure, the R ratio,and the environment. As shown shematically in the figure, 
ΔKIth varies widely, but for many metallic materials lies in the range ∼ 2M P a

√
m ≤

ΔKIth ≤ ∼ 10M P a
√

m. 

Figure 5: Schematic near­threshold fatigue cracking. 
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<
Regime B: 10−8 < ∼ (da/dN ) ∼ 10−5 m/cycle 

In this regime, for a given value of R ratio, there is an essentially linear relationship 
between log 

� 
da 

� 
and log(ΔKI ):dN 

� 
da 

�
log10 = log10 A + m log10(ΔKI )

dN 

= log10 A + log10 {(ΔKI )
m } 

= log10 {A(ΔKI )
m } 

or 
da 

= A(ΔKI )
m . 

dN 
In this equation, “A” and “m” are experimentally determined material constants de­

dascribing the straight line portion of the 
dN vs. ΔKI curve. Over a broad spectrum of 

engineering alloys, the range of the dimensionless exponent m is ∼ 2 ≤ m ≤∼ 12, with 
a “typical” value of m � 4. In Regime B (also known as the “Power Law” or “Con­
tinuum” Regime) there is relatively little influence of microstructure, R­ratio, or dilute 
environment on the fatigue crack growth behavior, and hence, on the constants A and 
m. The power law form of fatigue crack growth law was first proposed by Paris, Gomez, 
and Anderson, and is often referred to as the “Paris law.” 
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Figure 6: Fatigue crack growth rate in the power­law regime. 

>
Regime C: (da/dN ) ∼ 10−5 m/cycle 

In Regime C the crack growth rates are very high, and consequently little fatigue crack 
growth life is involved. Region C has the least importance in most fatigue situations. In 
this region the stress levels are high enough ( Kmax approaches KIc in Regime C) so that 
crack extension due to the static modes of failure like cleavage and microvoid coalescence 
is superposed onto the mechanism of cyclic subcritical crack extension. Because the 
static fracture modes are sensitive to microstructure and stress state, the growth rates in 
Regime C (also known as the “Static Modes” Regime) are sensitive to the microstructure, 
the R­ratio and specimen thickness. However, because (da/dN ) in this regime is so high, 
it is insensitive to the environment and the frequency. 

For crack–tolerant design procedures the log 
� 

da 
� 

versus log(ΔKI ) curve is approxi­
dN 

mated as 

If ΔKI < ΔKIth then (da/dN ) = 0 
If ΔKI ≥ ΔKI th then (da/dN ) = A(ΔKI )

m 
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Figure 7: Rapid fatigue cracking in the “static modes” regime. 

where A and m are experimentally determined constants. 

da 
� 

0 if ΔKI < ΔKI th 

� 

= 
dN A(ΔKI )

m if ΔKI ≥ ΔKIth 

In the equation (da/dN ) = A(ΔKI )
m , 

•	 (da/dN ) has units of (m/cycle), and


(ΔKI )
m has units of (MPa

√
m)m .
• 

Hence, 
m/cycle

A has strange units of 
(MPa

√
m)m ! 
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To make life simpler, let 

ΔKIo be a reference crack driving force, and let
� 
da 

� 
o 
≡ Δao be the corresponding reference crack growth rate.


dN 

That is, ΔKIo and Δao are the values of any point on the power law growth rate curve. 
Then the power law expression 

� 
da 

� 

= A(ΔKI)
m 

dN 

may be written simply as � 
da 

� � 
ΔKI 

�m 

= Δao , (1)
dN ΔKIo 

where the material constants 
� 

da 
� 

= Δao, ΔKIo, m 
dN o 

have more familiar dimensions. In applying eq. (1), it is understo od that the driving 
force for cyclic crack growth is the cyclic stress intensity factor 

ˆΔKI = QΔσ
√

πa; Q = Q(a). 

This last expression is dimensionally misleading since Q is dimensionless, while [a] = 
length. Rather, it is intended to remind us of the possible functional dependence of Q 
on variable crack length in a structure of fixed geometry (e.g., width w). In general, 

ˆQ = Q(a/w), etc. 

Integration of Crack­Growth Equation 

By rearranging (1), we have the differential expression 

(ΔKIo)
m da 

dN = ,
Δa0 (ΔKI)m 

which can be integrated (on the left with respect to N and on the right with respect to 
a) as 

af af
� Nai→ (ΔKIo)

m � 
da 

Nai
dN = � 

da 
� 

ai 

� 
ˆ

→af ≡ 
0 dN o Q(a)Δσ

√
πa

�m . 
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In writing the integrated form, we have emphasized that Nai
is the number of cy­→af 

cles required to grow a fatigue crack from initial value “a = ai ” to final crack length 
“a = af ” under the application of cyclic stress range Δσ in a material having power­law 
fatigue crack growth behavior. We have accounted for the dependence of ΔKI on a by 
substituting the stress intensity factor calibration ΔKI = QΔσ

√
πa under the integral 

sign. 

For constant Δσ, this term can also be factored outside the integral: 

(ΔKIo)
m � af1 da 

= m . (2)Nai→af Δao (Δσ
√

π)m
ai 

�
Q̂(a)a1/2

�

In general, Q̂(a) is a complex function of the crack length, and it is usually necessary 
to perform the integration numerically. However, if Q is constant, independent of a, then 
(2) reduces to 

(ΔKIo)
m � af 

m1 
= a− 

2 da. (3)Nai→af Δao (QΔσ
√

π)m 
ai 

Assuming ai is known, we may define the initial range of cyclic stress intensity factor as 
ΔKIi ≡ QΔσ

√
πai. Thus, on multiplying the numerator and denominator by a

m/2 
, we i 

obtain 
m/2 m � afai 

�
ΔKIo 

�
m 

Nai→af = �
da 

� 
ΔKIi ai 

a− 
2 da. (3a) 

dN o 

Finally, on integrating (3a), we obtain (for m > 2) 

m/2 afm 
��

ai 

��
ΔKIo 

�
m 

1

+ 1
�a− m +1 

�
2Nai

= →af Δao ΔKIi 
�− 

2 ai 

m/2 (m−2)

�
ai 

� �
ΔKIo 

�m � 
2 2Nai

= f ,→af Δao ΔKIi 
− 

m 
2 

− 2 

�� 

a
− − ai

− (m−2) 
� 

or 
m/2 m 

⎤ 
a

�
ΔKIo 

�
2 

⎡ 
1 1 

Nai = i 
(m−2)→af Δao ΔKIi (m − 2) 

⎣ 
2 

− 
(m−2) 

⎦ . 
2ai af 

This last expression may be re­arranged as 

� (m−2)
m 

2ai 
� 

ΔKIo 
�

2 
� �

ai 

� 

= ; (m > 2). (4a)Nai→af Δao QΔσ
√

πai (m − 2) 
1 − 

af 
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It is sometimes useful to plot the equation for a(N), based on constant Q Δσ and an 
initial crack length ai; for m > 2, (4a) can be inverted to give 

ai 
a(N) = �

1 − N 
� 2 , 

(m−2) 

N0 

where �m 
ai 

� 
ΔKIo 2 

N .0 ≡ 
Δao QΔσ

√
πai (m− 2) 

The integral of (3) for the special case of the power­law exponent m = 2 provides the 
logarithmic form 

ai 
� 

ΔKIo 
�2 � � 

af 
��

ln (for m = 2). (4b)Nai→af = Δao QΔσ
√

πai ai 

The compact expressions (4a,4b) give the number of cycles N required to prop­ai→af 

agate a crack from any initial size ai to any final size af under conditions of constant Q 
and constant Δσ. The structure of the dependencies of N on the system variables is ai→af 

extremely revealing. In particular, the dominant role of ai is clearly seen for m > 2. Also, 
the essential futility of improving fatigue crack propagation life by increasing toughness 
is evident. For m > 2, we see that the fatigue life is bounded, even if the material were to 
be made “infinitely” tough, with critical crack size ac = a . Similarly, the weak log­f →∞
arithmic improvement in fatigue crack propagation life with increasing ac = af for m = 2 
is likewise indicative of little benefit of increased toughness on fatigue crack propagtion 
life. Finally, the nth­power dependence of growth­rate on Δσ (or on Δ[load], in general) 
is directly reflected in a corresponding inverse power­law dependence of fatigue crack 
propagation like on cyclic load range. 
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