2.002 MECHANICS & MATERIALS II

INTRODUCTION TO LINEAR ELASTIC
FRACTURE MECHANICS

© L. Anand



e Sometimes, components and structures which have
been properly designed to avoid failures due to exe-
cessive elastic deflection or plastic vielding, will fail
into two or more pieces in a catastrophic brittle man-
ner.

e [ his usually occurs due to the presence of cracks in
the structures. These cracks can extend rapidly at
applied load levels which are nominally well within the
linear load-displacement response of the component.

o Over the last 50 years a methodology based on the
theory of linear elastic fracture mechanics (LEFM)
has been developed to help design components and
structures against this catastophic mode of failure.



e [ he essence of the theory is embodied in the follow-
ing fracture initiation criterion for globally brittle
fracture of structures:

K; < Ky,

The quantity K is called the mode I stress intensity
factor. It is a function of the applied stress, the crack
length and the geometry of the body. The quantity
Ky, is a critical stress intensity factor or fracture
toughness. It a material property which measures
the resistance of a material to the propagation of a
crack.

e We shall outline the development of this fracture cri-
terion, the conditions under which it is applicable, and
discuss how the theory is typically applied in practice.



IMPORTANCE OF FRACTURE MECHANICS

e Most engineering structures either initially con-
tain small crack—like defects, or they readily de-
velop such defects during service.

e [ he influence of pre-existing cracks on the strength
of materials need to be understood and quantified.

e [ he initiation and growth of crack-like defects during
service — fatigue-cracks, needs to be understood and
quantified.

e A defect-tolerant design and maintenance philosophy
needs to be developed.



Local, or microscale, characterization of the mecha-
nisms of fracture as brittle or ductile:
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e Global, or macroscopic, characterization of the frac-
ture of a structure as brittle or ductile:
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We will focus our attention on globally brittle frac-
ture of structures.
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Estimate for Tlocal
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K, is called the theoretical stress concentration factor,
it is 3 dimensionless quantity.
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Estimate for the ideal cleavage strength o,

e A perfect single crystal is expected to be the strongest
form of a crystalline solid, so its strength represents
an upper bound to the attainable strength of a solid in
the absence of any cracks. On the atomic scale, frac-
ture is always a tensile phenomenon in which planes
of atoms are pulled apart.

e [ he “ideal cleavage strenth”

Oc,

represents the stress required to separate two neigh-
boring planes of the atomic lattice. This ideal cleav-
age strength is associated with a theoretically per-
fect crystal, and it is determined solely by the binding
forces between the atoms.
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The length (A\/2) was mtroduced to represent the effec-
tive range of the atomic forces. We estimate (A\/2) by

applying an energy balance to the idealized separation
process.



The external work per unit area required to separate a
crystal across a lattice plane is simply the area under the
o VS. 6 curve. The fracture process creates two new
surfaces in the crystal, thus the total energy required to
produce the two surface is 2l 5, where 5 is the surface

energy per unit area of the crystallographic cleavage
planes.
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Thus, when looking for strong crystalline solids, we should
look for materials having high elastic modulus and specific

surface energy, and with compact crystallographic unit
cells.



The specific surface energy I of most solids scales with
the elastic modulus F, and when expressed in units of

(Fag) J/mz, is given to an adequate approximation by
Faqg Faqg
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Substituting this in 0. = /= we obtain

S

EF F

~ E—E
T his represents an upper bound to the attainable strength
in a perfect crystalline solid in the absence of cracks.
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However, most solids contain intrinsic crack-like micro-
defects, and for this reason they generally fracture at
stress levels one to three orders of magnitude smaller
than this estimate for o..
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The quantity K7 is called the mode I stress intensity
factor. The quantity Kj. is a critical stress intensity
factor, it is a material property also called the fracture
toughness.
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= Krelmin > {3 x 107° x E} MPavm.

e T his estimate defines a lower limit on values of Ky,
since in obtaining this estimate we have neglected the
effects of plasticity within the process zone.

e It is reasonably accurate for most brittle ceramics and
glasses because when they fracture, there is negligible
inelastic deformation, and the energy absorbed is only
slightly more than the surface energy.



e In contrast, when metals and ductile polymers frac-
ture, the energy absorbed is vastly greater because
of the plasticity associated with crack initiation and
propagation. The effect of local plasticity in the frac-
ture process zone is to raise the values of K. to values
much larger than the purely elastic estimate given by

Krelmin ~ {3 x 1076 x B} MPaym.

¢ In practice, the material property K;. iIs deter-
mined experimentally from combinations of crack
size and applied stress at fracture.
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SUMMARY

T he macroscopic fracture criterion for globally brittle frac-
ture of structures is

K; < Ky, K; = o0o"y/ma, Kj;.— Fracture Toughness.

The quantity K4 is called the mode I stress intensity
factor. It is a function of the applied stress ¢ and the
crack length «, it has units of MPay/m.

The quantity Kj. is a critical stress intensity factor.
It a material property which is also called the fracture
toughness. It measures the resistance of a material to
the propagation of a crack.



Typical applications of c°°y/ma < Kj. include:

1. Given: Fracture toughness Kj. and Crack size a.
Determine: Critical stress at fracture,

. KIC

Uf_\/ﬁ

2. Given: Fracture toughness K. and applied stress o°.
Determine: Critical crack size at fracture,

_1 KIC)%

T o

%

3. Given: Stress and crack size at fracture, o and af.
Determine: Fracture toughness, Ky,

KIc: O'f,/’ﬂ'a‘,f.



In the what follows, we will

e Examine the foundations of linear elastic fracture me-
chanics more deeply, noting special results in linear
elastic crack tip stress analysis

e [ake consideration of the size and shape of the crack
tip plastic zones, and

e Consider the inherent limits of applicability of linear
elastic fracture mechanics.



Consider a sharp crack in a prismatic isotropic linear elas-
tic body. There are three basic loading modes associated
with relative crack face displacements for a cracked body.

(a) (b) (c)

(a) the tensile opening mode, or Mode 1
(b) the in-plane sliding mode, or Mode 1I
(c) the anti-plane tearing mode, or Mode III.

In most engineering applications, brittle fracture of struc-
tures typically occurs under Mode 1. Accordingly, in what
follows, we shall focus on Mode 1 only.



Stress field in the vicinity of the crack-tip:

We shall identify the positions in terms (r, #) coordinates
of a cylindrical cpordinate system, and list the results of
an asymptotic sthess analysis which gives us the variation

of the components o;; with position (r,0yas r — 0, for
Modes 1.
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T he stress components are proportional to 1/\/F, and they
approach infinity as »r — 0. Mathematical singularity.

T he stress components are proportional to the parameter
K. It is for this reason that Ky is called the the Mode
I stress intensity factor.



e [ he task of stress analysis in linear elastic fracture
mechanics (LEFM) is to evaluate K; and its depen-
dence on geometry, load type, and load amplitude.

e Over the last ~40 vears many methods for obtaining
K-solutions have been developed. Several hundred
solutions, mostly for two-dimensional configurations,
are now available.



e T he common methods for finding the appropriate K-
solutions are listed below:

— Look up K for the geometry of interest in a Hand-
book of Stress Intensity Factors.

— Perform a numerical stress analysis (e.g., finite el-
ement) of the problem, and use an appropriate
method of post-processing the results to extract
the stress intensity factor.

— Experimental stress analysis of the configuration.
Among the experimental tools available are pho-
toelasticity, Moiré interferometry, and careful mea-
surement of the overall structural compliance (Gen-
eralized [Displacement] / [Force] ratio) as a func-
tion of crack dimensions.



For simple geometries, or where a complex structure can

be simply modeled, it may be possible to use the following
handbooks:

1. Tada, H., Paris, P. C., and Irwin, G. R., The Stress
Analysis of Cracks Handbook. Second Edition. Paris

Productions Incorporated, 226 Woodbourne Dr., St.
Louis, Missouri 63105, 1985.

2. Rooke, D. P. and Cartwright, D. J., Compendium of
Stress Intensity Factors, HMSO, London, 1976.

3. Sih, G. C., Handbook of Stress Intensity Factors for

Researchers and Engineers, Lehigh University Report,
1976.



For the important proto-typical case of a finite crack of
length 2a in a large body subject to a far-field stress

o0 — o0
0-22:(7 .

the mode 1 stress intensity factor is given by

Ky = oVma




For other geometrical configurations, in which a charac-
teristic crack dimension is ¢ and a characteristic applied
tensile stress is o, we will write the corresponding stress
intensity factor as

Ky = Qo"™/ma
where ¢ is a dimensionless factor needed to account for
a geometry different from that of our proto-typical case.

We call ¢ the configuration correction factor. It is
usually given in terms of dimensionless ratios of relevant
geometrical quantities.



For example, for a center crack in a long (L > 3w) strip
of finite width w,

the stress intensity factor is given by

K; = Qo®°y/wa, Q=0aq (%) = {sec (E) }1/2.

w



It is important to note that the stress intensity fac-
tors for combined loading can be obtained by super-
position.

That is, if for a given cracked body the far-field loading
can be decomposed into

5 — 5 (1) RS (2),

then Kj; for the cracked configuration under a far-field
stress ¢°° can be obtained as

K=Kk 4+ k),

where K}l) and K}Q) correspond to the stress intensity
factors for the cracked configuration under the far-field
stresses ¢ (1) and o> (2), respectively.



As an example, consider an eccentric load P applied at
a distance e from the centerline of a component with an
eddge crack:
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T his eccentric load is statically equivalent to the combina-
tion of a centrally applied load P and a bending moment
M = Pe. Then, using the stress intensity factors for (1)
an edge crack in a finite width strip in tension, and (2)
an edge crack in a finite width strip subjected to pure
bending, the stress intensity factor for the eccentrically
loaded strip with an edge crack can be easily calculated.



Edge Crack in a Long (L > 3w) Finite Width Strip iIn
Tension
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Edge Crack in a Long (I > 3w) Finite Width Strip of
Thickness B Subject to a Pure Bending Moment M
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Deep Crack Approximation for a/w > 0.7:
K;= (4M)/Bc3/?2, where c=w —a.



LIMITS OF APPLICABILITY OF K;-SOLUTIONS

1. In order for the asymptotic field

K
Cij = ket fzj(ﬁ) as r — 0,

27T

based on K; to acceptably approximate the complete
elastic fields at a finite distance » from a crack tip, it
iSs necessary that » be no more distant from the crack
tip than a few percent of other characteristic in—plane
dimensions, such as the crack length, the remaining
uncracked ligament, and distance from the crack tip
to a point of application of load.



With respect to the figure below,

the asymptotic fields based on K; should acceptably
approximate the complete elastic fields at distances up
to rx from the crack-tip, provided rg < a, (W —a), h.

Kydominantregion: {r|r<rg; rg <a, (W —a), h,}



2. Limit to applicability of Kj;-solutions because of
the local inelastic deformation

T he stress compone 55 he crack is
Ky
ooo(r, 8 =0) = Norh

T his exceeds oy at points closer than the distance

L1 [(K7\?
rr, ——|—1 .
Ip 2T \ Oy

The length r;, is called the plastic zone size.



Small Scale Yielding (s.s.y)

For Mode 1 loading, vielding at the tip of a crack will
occur over a region whose maximum dimension is given

by
1 (K7\°
i, —— | — ] .
Ip 2T \ Oy

Linear elastic fracture mechanics is based on the
concept of small scale yielding (s.s.y.).



Small scale vielding is said to hold when the applied loads
levels are sufficiently small (less than approximately one-
half of the general vielding loads) such that there exists a
radius r = rx about the crack-tip (exterior to the plastic
zone) with the following properties:

o 11, K rg , SO that the stress fields at rg is free of any
perturbations due to plasticity.

o i K {crack length, relevant in-plane geometric dimensions},
so that the elastic solution at rg is given accurately
in terms of the Ki-solution.



From a practical viewpoint, it is necessary that rrp <<
a,(W —a), and h:

A distance of 15 x TIp is generally considered to be suffi-
cient for small scale vielding conditions to prevail. Hence,

1 (K;\°
if a, (W—a), h& 15><—(—f) _ then s.s.v. holds,
2T \ oy




Under small scale vielding conditions the asymptotically
computed stress field

K
T —If?;j(é?) as r — 0,

" 27T
is close to the ‘“‘complete’” stress field for all material
points on r = rg. The stress magnitude for all material
points on r = rg is governed solely by the value of Kj.
That is, there is a one-parameter, K;, characteriza-

tion of the crack tip region stress field.



Since the value of the stress field for all material points
on rg is governed solely by the value of Ky, the specific
physical processes of material separation occurring at the
crack tip are driven by Kjy.

In the theory of linear elastic fracture mechanics (LEFM)
the criterion for fracture initiation or crack extension in
response to slowly applied loading of monotonically in-
creasing magnitude is taken as

KI S KC:

where K7 is the applied stress intensity factor, and K.
is @ material and thickness dependent critical value of Ky
for crack extension, called the fracture toughness.

The fracture toughness for a given material and compo-
nent thickness is determined experimentally.



FRACTURE TOUGHNESS TESTING

Fracture toughness values are obtained by testing fatigue-
cracked specimens (to prepare cracks of relatively stan-
dard sharpness) at a given temperature and loading rate.

Standard specimen geometries and test procedures used
to obtain such data at slow loading rates are given in
American Society for Testing and Materials (ASTM) Stan-
dard E-399.

The test methods have been fully discussed in the labo-
ratory.



For operational purposes the E-399 standard requires

2

1 (K
a, (W —a), h R 15 x re, Tcz—(—c)
21 \ Oy

If this requirement of small scale vielding is met, then a
valid K. value has been obtained in the test.

For a given material the fracture toughness value K. gen-
erally depends on the thickness B of the test specimen.

Ke
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Note that regardless of the value of B, we expect
that an unconstrained planar elastic body loaded in
its plane will globally be in a state of plane stress.

However, when plastic deformation occurs at the crack-
tip, the notions of “plane-stress’ or “plane-strain’ in
the plastic zone at the crack tip are governed by the
size of the plastic zone relative to the specimen thick-
ness 5.

In plane-strain it is essential that r;, < B

In plane stress rp, < B.
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If r;, € B, then along a very large part of the crack tip
the plastic strain field will be essentially one of plane
strain. On the other hand, if rp, g B, the plastic strain
field will be essentially one of plane stress.



Image removed due to copyright considerations.
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Since the plastic strain field in the vicinity of the crack tip
for large values of the thickness B corresponds essentially
to plane plastic strain,

Kj;. = plane strain fracture toughness.

Further, since Ky, is thickness independent it is a ma-
terial property.



The quantity

1 (K7 \°
T —
fe 2T\ Oy
is called the plane strain critical crack tip plastic zone
Size.

Thus, the second requirement of the ASTM E399 plane
strain fracture toughness test is that the thickness B sat-

isty

o
1 /K
B < 15 x (Iﬂ .
2T Oy




If a test is performed on specimens which satisfy the ge-
ometric requirement on the in-plane dimensions for small
scale yielding,

2
1 (K

a, (W —a), h < 15 x ( k) ,
2T \ Oy

and also the requirement on the thickness

2
B2 15 x (B
27 Oy .

for plastic plane strain at the crack tip, then the measured
fracture toughness will be a valid plane strain fracture
toughness, Kjy,.



FE, GPa | oy, MPa | K;., MPay/m

Steels

AISI-1045 210 269 50
AlISI-1144 210 540 66
ASTM A470-8 210 620 60
ASTM AB33-B 210 483 153
ASTM AbB17-F 210 760 187
AISI-4130 210 1,090 110
AISI-4340 210 1,593 75
200-Grade Maraging 210 1310 123
250-Grade 210 1,786 74
Aluminum Alloys

2014-T651 72 415 24
2024-T4 72 330 34
2219-T37 72 315 41
6061-T651 72 275 34
7075-T651 72 503 27
7039-T651 72 338 32
Titanium Alloys

Ti-6AL-4V 108 1,020 50
Ti-4AF4Mo-25n-0.55i 108 945 72
Ti-6AI-25n-4Zr-6 Mo 108 1,150 23




F, GPa | K., MPaym
Polymers
Epoxies 3 0.3-056
PS 3.25 0.6 —-273
PMMA 3. — 4. 1.2 —-1.7
PC 2.35 25 —38
PVvC 2.5 — 3. 1.9 —-25
PETP 3 3.8—-6.1
Ceramics
Soda-Lime Glass 73 0.7
MgO 250 3
Al>O3 350 3. — 5.
Al>O3, 15% ZrO- 350 10.
SigNg 310 4. — 5.
SiC 410 3.4




e The Kj;. value of many structural materials under a
constant slow rate of loading increases with increasing
temperature.

Image removed due to copyright considerations. Graph of fracture toughness versus temperature.



For most structural steels the rate of increase of
K. with temperature is not constant, but increases
markedly above a certain test temperature called
the “transition temperature’ .

Below the transition-temperature, the mode of crack
extension is predominantly cleavage requiring little
work to fracture

Above the transition temperature the crack exten-
sion is by ductile tearing, requiring large amounts
of work to fracture.

In the transition temperature region there is a con-
tinuous change in the microscopic mode of crack
extension.



e T he plane strain fracture toughness value, Ky, is also
affected by the loading rate.

For structural steels it is found that as the loading
rate increases, the value of K. decreases.

The asymptotic value of Kj. under impact or “dy-
namic’ loading rates is denoted by Kjg.

It is found that variation of Kj; with temperature is
similar to that of Kj..

e [ he Kj. value determined at a temperature and load-
ing rate corresponding to service conditions is used
to estimate the relation between fracture stress and
crack size for a material in service when small-scale-
vielding and plane strain conditions are expected.



e Even when plane strain crack tip conditions are not
expected, the crack extension criterion K; < Kj. IS
sometimes adopted instead of the more appropriate
criterion Ky < K., because difficulties exist in estab-
lishing K. values for various plate thicknesses. As is
clear, this will lead to conservative design. Alternative
design procedures exist, and should be explored.

e Further, cyclic loads can cause crack extension at
maximum Kj; values less than the K;. value. Crack
extension under cyclic or sustained load will be in-
creased by the presence of an aggressive environment.
T herefore, application of Ky, in the design of service
components must take such cyclic and environmental
crack extension into account by referring to appropri-
ate information.



A TYPICAL PROCEDURE FOR DESIGN TO
PREVENT BRITTLE FRACTURE OF
COMPONENTS

1. Determine the location, magnitude and orientation of
the maximum principal stress ¢ = o7 in the compo-
nent.

Recall that for an arbitrary stress state we can always
find the principal stresses {o; > o;; > o577} and the
corresponding principal directions {ny,nyr,nyrr}. It is
emphasized that the subscripts I, II, and Il used
here do not refer to the three different modes of
loading at a crack front.



2. Determine the location, size and orientation of any
cracks in the component by non-destructive testing
(NDT) techniques.

If no cracks are detected, then assume that the
crack size a¢ that can escape detection by the
NDT technique is present, and is in the worst
possible location and orientation.



3. Determine the stress intensity factor Ky = Qo+/7wa
for these conditions of stress o, crack length a, and
geometry of the cracked body.

The first place to search for the appropriate expres-
sions for Kj; are the handbooks tabulating stress in-
tensity factors. If no tabulated case is found, then
appropriate numerical and/or experimental techniques
need to be employed to determine the expression for

KI: QO'\/E



4. Determine K. for the material from which the com-
ponent is built.

Values for Kj. have been tabulated for some impor-
tant engineering materials. Be careful, K. values are
in general a function of the temperature and the load-
ing rate. Use the appropriate value of Kj;. for the
service conditions. If an appropriate value for Kj,
cannot be found, then suitable experiments will need
to conducted to determine the plane strain fracture
toughness for the material under the service condi-
tions.



5. Use suitable factors of safety, S, in your design based
on the governing equation K; = (K;./S5).

6. Ensure that K; < (K7y./S) throughout the entire life
of the structure.

Be careful of fatigue due to cyclic loading. A compo-
nent which might have been properly designed against
brittle fracture under static loading, might fail under
cyclic loading if the crack grows to point when the
critical condition K; = Kjy. is met.

Failure due to fatigue will be our next topic of study.





