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Steady-State Bending of Viscoplastic Beams

1. Kinematics
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2. Constitutive Relation
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3. Moment-Curvature Rate Relation
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4. Equation for Stress
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5. Differential Equation for Lateral Displacement

| M (x,t)

= k(x,t)

02v(x,t)

Ox2

_ (I/%:(w,t)l

-
.

€0
(M (z,t)|

sly
| M (z, )|

sly

/

1/n
) slp

\ N

> sgn(M (x,t))

y 1

> sgn(M (x,t))

/



Example Problem: Cantilever Beam
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Example Problem: Cantilever Beam (cont.)

Boundary conditions: (1) ¥ =0 at 2 =0 and (2) % =
at £ = 0 (Assume P(t) > 0)
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Example Problem: Cantilever Beam (cont.)
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T hree-Dimensional Generalization of Constitutive
Equations for Elastic-Viscoplastic Materials

1. Strain Rate Decomposition:
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€; total strain rate
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2. Constitutive Equations for é;?j:
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E Young's modulus
v Poisson’s ratio

2. Constitutive Equations for égj:
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n creep exponent
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e Note that in uniaxial tension when o171 = o, with all
other o;; = 0, we have o}, = (2/3)0, 05, = 033 =
—(1/3)o, and @ = |o|. Therefore, the constitutive

equation for égj yields
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as it should.

e For the case of rigid-viscoplastic materials, the elas-
tic strains and strain rates are neglected:
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Example Problem: Torsion of Thin-walled Tube

e Consider a thin-walled tube of radius r, wall thickness
t and length L. One end of the tube is fixed, while on
the other a constant twisting moment M; is applied.
The tube is at high homologous temperatures (creep
conditions prevail). Calculate the twisting rate cb for
the tube.




Example Problem: [Thin-Walled] Torsion

e [ he angle of twist ¢ is a function of time, i.e., ¢ =
o(t). The angle of twist per unit length is denoted by

o =¢/L=a(t)

e Displacement field:




e Strain field:
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e Constitutive equation: Since the applied moment M (&)
is constant, the elastic strain rate ¢, = 0. (Strictly,
we need to verify that é'ij = 0; however, the thin-
walled tube in torsion has one constant non-zero stress
component, ogy,, that is directly proportional to twist-
ing moment, M; (see ‘Equilibrium’, below)). There-

fore,




e The only non-zero stress component is oy, = oy,.

Also, @ = v/3|og.| from the definition of the equivalent
tensile stress. T herefore,

€02 = \?éo {ﬁlaezl} sgn(oyg.) (2)

e Equilibrium: The applied torque should balance the
internal torque of the only non-zero stress component,
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e Finally,
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Example Problem: Torsion of Thick-walled Tube

Tube Cross-section

e Recall
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For simplicity, let og,(r) > 0. Therefore,
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Since A = M/ Jn,
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