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RATE-DEPENDENCE AND
RATE-INDEPENDENCE OF PLASTIC
RESPONSE
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e Plastic deformation in metals is thermally-activated
and inherently rate-dependent.



e However, the plastic stress-strain response of most
single and polycrystalline materials at absolute tem-
peratures T' < 0.357T,,, where 1;, is the melting tem-
perature of the material in degrees absolute, is only
slightly rate-sensitive, and in this temperature regime
it is often be modeled as rate-independent. We shall
first consider a rate-independent theory.
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Consequences of Viscoplastic Deformation at High
Homologous Temperature

For isothermal deformation (T=const)
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Creep Test

e A typical creep test consists of instantaneously load-
ing a cylindrical test specimen of a material to a con-
stant stress, which is maintained at a constant tem-

perature. The resulting strain is measured as a func-
tion of time.
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Idealization of Creep Curve

e For deformation analysis at constant temperature, the
strain-time response may be idealized as
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Stress Dependence of ¢, at Constant Temperature
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Temperature-Dependence of €, at Constant o -
Preliminaries

e Avogadro’s number: N4 = 6.022x1023 atoms/molecules
per mole

e Boltzmann's constant k= 1.381 x 10723 J/K
e Universal gas constant R = Nk = 8.314 J(mol) 1K1

e Mole: 1 mole of any substance is that mass of the
substance containing N4 atoms/molecules; e.g., the
mass of 1 mole of C12 atoms is 12 grams.



Temperature Dependence of ¢, at Constant Stress
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e The slope of the curve is m/1 = —Q/R, where @
is called the activation energy for creep, with units

J(mol)~1. Then for a constant C(¢), the above curve
can be mathematically represented as

. Q\ /1 . Q
Iné;, = InC — (E) (f) == é;, = Cexp (_ﬁ>



An Important Observation

e Let us evaluate the increase in €5, for a material with
Q = 270kJ/mol when the temperature is increased
from 77 = 800°C = 1073 K to T, = 820°C = 1093 K.
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e [ herefore, with a temperature increase of only QOOC,
the creep rate almost doubled!!

e Caution: the temperature 7' must be expressed
in kelvins



Combined Stress and Temperature Dependence of
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pre-exponential factor (s~ 1)

creep activation energy (J/mol)

creep exponent

reference stress which produces a strain rate ¢g
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Summary of One-Dimensional Creep Equation

i (1)
, = E(T) (2)
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e Note that equation (3) states that the rate of creep
(or ‘viscoplastic’) strain increases exponentially with
temperature, so that the time required for a given
amount of creep strain decreases exponentially with
temperature.




Example Problem: Stress Relaxation

e Consider a bolt with pre-tension ¢ = ¢; at time ¢t = 0.
Given that the bolt is maintained at constant tem-
perature, determine the pre-tension at some time ¢.
The isothermal constitutive equation for steady state
creep is given by ¢© = Bo™ with n %1
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Example Problem: Stress Relaxation (cont.)

¢ = &
=0 = ée + €€ since ¢ = const in the bolt
1d
=0 = ——|—B no %% = pgn
E dt
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= o "o = —EBdt = o "do = —EB / dt
o;=0c(0) 0
= o(t) (D _ oD — (1) EBt
= o(t) = O

[1 4 (n— 1)t Bo? (E/o;)]1/(n—1)

e Defining the characteristic relaxation time ¢, such that
o(tr) = o0;/2, we get
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