
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
DEPARTMENT OF MECHANICAL ENGINEERING 

CAMBRIDGE, MA 02139 

2.002 MECHANICS AND MATERIALS II


Spring, 2004


Creep and Creep Fracture: Part I


c�L. Anand




RATE-DEPENDENCE AND


RATE-INDEPENDENCE OF PLASTIC


RESPONSE




• Plastic deformation in metals is thermally-activated 
and inherently rate-dependent. 



•	 However, the plastic stress-strain response of most 

single and polycrystalline materials at absolute tem­

peratures T < 0.35Tm, where Tm is the melting tem­

perature of the material in degrees absolute, is only 

slightly rate-sensitive, and in this temperature regime 

it is often be modeled as rate-independent. We shall 

first consider a rate-independent theory. 

Material Melting Temp, C Tm, K 0.35Tm, K ≡ C 

Ti	 1668

Fe	 1536

Cu	 1083

Al	 660

Pb	 327


1941 679 406

1809 633 360

1356 452 201

933 327 54

660 231 -42




Consequences of Viscoplastic Deformation at High

Homologous Temperature


For isothermal deformation (T=const)




Creep Test


•	 A typical creep test consists of instantaneously load­
ing a cylindrical test specimen of a material to a con­
stant stress, which is maintained at a constant tem­
perature. The resulting strain is measured as a func­
tion of time. 



Idealization of Creep Curve


•	 For deformation analysis at constant temperature, the 
strain-time response may be idealized as 

�c�	 = �e + ˙ tss

�c�̇	 = �̇e + ˙ss 
σ̇

�e˙ = 
E 



Stress Dependence of �̇ss
c at Constant Temperature
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Temperature-Dependence of �̇c at Constant σ ­ss 

Preliminaries


•	 Avogadro’s number: NA = 6.022×1023 atoms/molecules 

per mole 

•	 Boltzmann’s constant k = 1.381 × 10−23 J/K 

•	 Universal gas constant R = NAk = 8.314 J(mol)−1K−1 

•	 Mole: 1 mole of any substance is that mass of the 

substance containing NA atoms/molecules; e.g., the 

mass of 1 mole of C12 atoms is 12 grams. 



� � � �	 � � 

Temperature Dependence of �̇c at Constant Stress ss 

•	 The slope of the curve is m/1 = −Q/R, where Q 
is called the activation energy for creep, with units 

J(mol)−1. Then for a constant C(σ), the above curve 

can be mathematically represented as 

1	 Q
ln�̇c = lnC − 

Q 
⇐⇒ �̇c = Cexp −ss R T ss	 RT 



� �	 �� 

An Important Observation


�c•	 Let us evaluate the increase in ˙ for a material with
ss 

Q = 270 kJ/mol when the temperature is increased 

from T1 = 8000 C = 1073K to T2 = 8200 C = 1093K. 

�c	 Q 1 1˙ss1 = exp	 − = 0.5746 
�c	 R T2 T1˙ss2 

•	 Therefore, with a temperature increase of only 200C, 

the creep rate almost doubled!! 

•	 Caution: the temperature T must be expressed 

in kelvins 



Combined Stress and Temperature Dependence of


�c˙
ss 

� � ��� �nQ σ 
�̇c = Aexp − 

RT s 

A pre-exponential factor (s−1) 
Q creep activation energy (J/mol) 
n creep exponent 
s reference stress which produces a strain rate �̇0 

�̇0 = Aexp 
� 
− Q 

� 

RT 



Summary of One-Dimensional Creep Equation


�̇ =	 �̇e + �̇c (1) 
σ̇

�̇e = ; E = E(T )	 (2) 
E 
�	 � ��� �nQ	 σ


�̇c = Aexp −	 (3) 
RT s


•	 Note that equation (3) states that the rate of creep 

(or ‘viscoplastic’) strain increases exponentially with 

temperature, so that the time required for a given 

amount of creep strain decreases exponentially with 

temperature. 



Example Problem: Stress Relaxation


•	 Consider a bolt with pre-tension σ = σi at time t = 0. 

Given that the bolt is maintained at constant tem­

perature, determine the pre-tension at some time t. 

The isothermal constitutive equation for steady state 

creep is given by �̇c = Bσn with n �=	 1




Example Problem: Stress Relaxation (cont.)


�c�̇ = �̇e + ˙

�c ⇒ 0 = �̇e + ˙ since � = const in the bolt 
σ̇ 1 dσ 

⇒ 0 = + Bσn ⇒ = −Bσn 

E E dt 
� t� σ(t) 

⇒ σ−ndσ = −EB dt ⇒ σ−ndσ = −EB dt 
σi=σ(0) 

⇒ σ(t)−(n−1) − σ
−(n−1) 

= (n − 1)EBt i 
σi 

⇒ σ(t) = 
[1 + (n − 1) t Bσi

n (E/σi)]
1/(n−1) 

• Defining the characteristic relaxation time tr such that 

σ(tr) = σi/2, we get 

0 



2(n−1) − 1 2(n−1) − 1 
tr = = 

(n − 1)EBσi 
(n−1) (n − 1)�̇i

c/(σi/E) 


