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1 Objectives 

The primary objectives of this lab are to introduce the concept of stress and strain 
concentration factors in notched structural configurations. The notion of stress con­
centration is experimentally explored qualitatively, using photoelasticity, and quan­
titatively, using experimental, analytical, and numerical methods. 

We will first examine photoelastic stress analysis techniques to illustrate features of 
locally concentrated stress and strain distributions around notches, holes, fillets, and 
other geometric discontinuities. We will then present analytical solutions for the 
stress distribution around a circular hole in an infinite plate, subjected to remote 
tensile loading, and quantitatively introduce the concept of a stress concentration 
factor. Estimates of the stress concentration factor for various notch geometries will 
be obtained from approximate engineering solutions. We will then measure the strain 
distributions around a circular hole, using standard strain gauge techniques. Finally, 
we will examine modern numerical solutions of the underlying elasticity problem, 
based on the finite element method. 
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2 Lab Tasks 

In this laboratory module we will 

•	 review the concepts of linear elastic stress concentration factors associated with 
geometric discontinuities such as notches, holes, and cut­outs 

•	 quantitatively examine the analytical stress fields around an isolated circular 
hole in a large (infinite) plate subject to remote uniaxial tension 

•	 generalize the concept of stress concentration factor to finite bodies, and explore 
the consequences of St. Venant’s principle for using analytical “infinite body” 
stress concentration results to estimate stress concentration associated with 
isolated discontinuities 

•	 discuss basics of photoelastic stress analysis of transparent birefringent materials 

•	 subject notched specimens of aluminum 6061­T6 and the engineering polymer 
polycarbonate (PC) to uniaxial elastic­level loading, and perform experimental 
evaluation of the stress concentration factor by using strain gauge output taken 
from the aluminum specimen, and birefringence contours observed on the PC. 

•	 examine basic output numerical results from a linear elastic plane stress finite 
element solution of the loaded notched specimen. 
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3 Lab Assignments: Specific Questions to Answer 

1. For the case of a circular hole in an infinitely wide plate, using equations (1a, 1b, 
1c), derive analytical expressions for the distribution of the stress components 
σrr , σθθ , and σrθ as a function of radial coordinate, r, along the ligament (the 
axis normal to remote loading, with θ = π/2; the sign convention for θ is given 
in Fig. 1). Plot these stress values, normalized by the far­field stress σ, for the 
range a ≤ r ≤ 10a. At what relative distance (r/a) does the value of σθθ return 
to within 5% of the applied far­field stress? How does this compare with St. 
Venant’s principle? 

2. For the case of a circular hole in a finite­width plate, and in particular, for the 
geometry of the specimen in Fig 8a, obtain the value of the stress concentration 
factor Ktg from the graph in Fig. 3. Compare the level of σθθ /σ at the edge 
of the hole (r = a) in an infinite plate, computed in (1) above, to that of the 
finite­width plate. Explain the reasons for any differences between the two stress 
concentration factor values. 

3. During the lab session, local circumferential strain values, �θθ , were recorded at 
various strain gauges placed along the ligament (θ = π/2). Plot these measured 
strain values as a function of the radial coordinate r, measured from the center 
of the hole. 

4. An additional remote strain gauge measured the far­field axial strain. Using 
this measurement, estimate the strain concentration factor at the hole, K� (see 
eq. (13)). How does K� compare with Ktg obtained in (2) above? Comment on 
the similarity/difference between the two values. 

5. Using the analytical expressions for σrr , σθθ , and σrθ derived in (1) above, obtain 
an analytical expression for the radial distribution of strain, �θθ , on the ligament 
at θ = π/2. Use this expression to obtain an approximate prediction of the �θθ 

profile along the ligament of the finite aluminum plate in Fig. 8a. The plate 
is loaded with an axial force P = 40kN . In your calculations, assume a value 
for the Young’s modulus of the aluminum plate as E = 72 GP a, and Poisson 
ratio of ν = 0.32. Compare your predictions with the experimental values 
obtained in (3) above, and comment on possible sources for differences between 
the measurements and the prediction. 

6. Compare the experimental values of strain on the ligament of the aluminum 
specimen with values obtained from the finite element simulation. What value 
does the finite element solution give for the strain concentration factor, K�? 

7. Comment on any observations made in the PC stress/strain concentration con­
figuration experiments. What effect did various geometric stress concentrators 
have on the deformation of the material? 

3 



4	 Background on Linear Elastic 

Stress Concentration 

4.1	 Circular hole in an infinite plate under remote tensile 
load 

The stress distributions around a central hole can be estimated for the simple case of 
an infinitely wide plate subjected to tensile loading. The overall stress distributions 
in the plate are given by (Figure 1) 
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where “σ” is the magnitude of the remotely­applied tensile stress, σ∞ .xx

Figure 1: Stress distribution around a circular hole.


The surface of the circular hole is r = a; the unit normal to this surface is n = −er, 
where er is the unit vector in the local radial direction. We understand that the state 
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of stress in the plate is approximately plane stress (providing plate thickness h � a), 
so that σzz = σzr = σzθ = 0. In this case the traction vector lies in the plane, with 
components 

t = −(σrrer + σrθ eθ) = 0, (2) 

which is consistent with an evaluation of eq. (1) at r = a: 

σrr(r = a, θ) = 0 (3a) 

σθθ(r = a, θ) = σ (1 − 2 cos(2θ)) (3b) 

σrθ(r = a, θ) = 0 (3c) 

For θ = π/2, the hoop stress in eq. (3b) attains its maximum value of σθθ = σmax = 
3 σ. This corresponds to the peak of the stress distribution circumferential stress 
distribution shown in Figure 2a. Hence we may say that the stress concentration 
factor (the ratio of the maximum local stress [component] to the far­field stress 
[component]) for this geometry is equal to 3. The concept of a stress concentration 
factor will be further discussed in the following section. However, it is important 
to note that stress near the hole greatly exceeds the far­field stress. Consequently, 
failure processes 1 may initiate locally at the edge of the hole under values of far­field 
stress which are themselves sufficiently small to preclude such failures from occurring 
remotely. 

Figure 2b, which shows the radial variation of σθθ along the ray θ = π/2, emphasizes 
that the magnitude of the stress concentration associated with the hole decays rapidly 
with increasing distance from the notch. This is a clear example of St. Venant’s 
principle, which states that the perturbations in a linear elastic stress field due to 
the presence of an isolated geometrical discontinuity of size “d” are localized within 
a region of characteristic linear dimension ∼ 3d from the discontinuity. The stress 
levels outside this region are therefore close to the nominal applied stress levels (un­
perturbed). 

1e.g., yielding (failure to deform only elastically), fracture (failure to remain an intact body), 
fatigue damage (failure to sustain load­carrying capacity over repeated load cycles) , etc. 
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Figure 2: Distribution of hoop stress component σθθ: (a) around the circumference 
of circular hole in a large body, and (b) radial distribution along the ligament where 
θ = π/2. 
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5	 Linear Elastic Stress Concentration Factors for 

Different Geometries 

See also, Crandall, Dahl, & Lardner, Sections 5.9 and 5.7) 

5.1 Stress concentration factors 

Stress concentration factors have been obtained for several geometries of engineering 
significance. These are often tabulated in engineering handbooks (e.g., “[R. E.] Peter­
son’s Stress Concentration Factors,” 2nd. Ed., John Wiley, New York, 1997, edited 
by W. D. Pilkey). Two types of stress concentration factor definitions are found in 
the literature, and it is important to apply the analysis consistent with the given 
definition. The first type of definition of stress concentration factor is based on the 
“gross” applied stress, σg (see equation (6) below for definition of σg). This stress 
concentration factor is given the symbol “Ktg ” according to 

σmax
Ktg ≡ , (4)

σg 

where σmax is the maximum local stress at the edge of the hole, and σg is the applied 
far­field stress remote from the hole. 

Similarly, we may also define the stress concentration factor based on the nominal (or 
net­section average) applied stress, σnom , according to 

σmax
Ktn ≡ . (5)

σnom 

Here σnom is the nominal, or net­section average stress acting across the minimum net 
area, Anet , of the plane containing the notch. The total tensile load, P , transmitted 
along a finite­sized member is finite and equal to the product of gross applied stress, 
σg, and gross area, Agross ; we also require the product of nominal stress, σnom , and 
net­section area, Anet , to equal the load: 

P = σg Agross = σnom Anet ,	 (6) 

so that 
Agross

σnom = σg . (7)
Anet 

For example, in a uniform­thickness plate (thickness = h = constant) of width 2w 
containing a central circular hole of radius a,Agross = 2wh and Anet = Agross −2ah; thus 
Agross /Anet = 2wh/h(2w−2a) = 1/(1−a/w), so σnom = σg/(1−a/w). Evidently, since 
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σmax is unique, the stress concentration factors Ktg and Ktn differ by a corresponding 
(but inverse!) area ratio: 

Ktn = Ktg 

� 
Anet 

A

� 

= Ktg · (1 − a/w). (8) 
gross 

Values for both stress concentration measures Ktg and Ktn for centrally­located cir­
cular holes in tensile­loaded plates of finite width are given in the graph of Fig. 3; it 
is readily verified from the figure that eq. (8) holds. It is also clear that in the limit 
of a finite hole in a very large body, the distinction between “net” and “gross” stress 
measures and stress concentration factors vanishes. 

5.2	 Stress concentration for elliptical holes in ‘infinitely wide’ 
plates 

For the case of elliptical holes in an infinitely wide plate (e.g., plate width 2w →∞, 
b/w → 0) subject to remote tensile loading, the stress concentration factor Kt∞ can 
be obtained analytically, and is given by: 

b 
Kt∞ = 1 + 2 ,	 (9) 

a 

where 2a is the length of the ellipse diameter in a direction parallel to the remote 
tension, and 2b is the length of the ellipse diameter in the direction perpendicular to 
the remote tension. The location of the maximum stress is at the ends of the 2b­axis 
of the ellipse. Equation (9) is plotted as a solid line in Figure 4. 

Equation (9) may also be expressed as 
� 

b 
Kt∞ = 1 + 2 , (10)

ρ 

where ρ is the local radius of curvature of the edge of the ellipse near the 2b­axis; for 
an ellipse, at this location, ρ = a2/b. 

5.3	 Approximate stress concentration factors from “equiva­
lent ellipse” models 

Equation (10) may be used to estimate the stress concentration factors for other 
“near­ellipse” isolated hole geometries in wide plates by introducing the idea of an 
“equivalent” ellipse. Figure 5 illustrates the concept for three different non­elliptical 
notch shapes of actual tip root radius ρ = r and actual length 2b projected perpen­
dicular to the remote tensile axis; the “equivalent ellipse” for each notch is shown in 
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dotted lines, having length 2b and “equivalent width” in the tensile stressing direction 
equal to 2aequivalent = 2

√
br. 

Use of the equivalent ellipse concept then allows an estimation of the maximum stress 
at the root of the isolated near­elliptical notch, for remote applied stress “σ∞,” as 

. 
�

b 
�

σmax = σ∞ × Kt∞(b, aequivalent) = σ∞ × 1 + 2 . (11) 
aequivalent 
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Image removed due to copyright considerations. See Chart 4.50 in Pilkey, Walter. Peterson's 
Stress Concentrations, 2nd ed. New York: Wiley, 1992. 

Image removed due to copyright considerations. See Chart 4.1 in Pilkey, Walter. Peterson's 
Stress Concentrations, 2nd ed. New York: Wiley, 1992. 



Figure 5: Schematic illustration of “equivalent ellipse” concept for various isolated 
notch geometries under remote tension. The notch root radius is denoted “r” in the 
figure, while it is termed “ρ” in eq. (10). Note that the top geometry of the slot is 
one of those tested in the polycarbonate plate in this lab (see Figure 8b). 

12


2b

2a

2a

t t
2b

r

r

r

r

Slit

Equivalent
Ellipse

σ

σ

. . .

.

.

.

.

.



6 Introduction to Photoelasticity 

NOTE: this section provides qualitative description [only!] of photoelastic stress 
analysis procedures. 

Stress distributions in some transparent materials may also be measured using pho­
toelastic techniques. These rely on illumination with plane polarized light obtained 
by passing light rays through vertical slots that produce polarized light beams hav­
ing waves that oscillate only along one plane perpendicular to the travel of the light 
ray. When the polarized light passes through a material which is being stressed in 
a direction parallel to the polarizing axis, then a fringe pattern is formed against a 
light (bright field) background. Conversely, when the stress axis is perpendicular to 
the polarizing axis, a “dark field”, or black image is formed. 

In some materials, the application of stress may cause an incident plane­polarized ray 
to split into two coincident rays with directions that coincide with the directions of the 
in­plane principal stress directions. Since this phenomenon is only observed during 
the temporary application of stress, it is known as “temporary birefringence”. Fur­
thermore, the speeds of the rays are proportional to the magnitudes of the respective 
principal stresses. Hence, the emerging rays are out of phase. They therefore produce 
interference fringe patterns when they are recombined. If they are recombined at an 
analyzer (shown in Fig. 6), then the amount of interference in the emerging rays is di­
rectly proportional to the difference between the local in­plane principal stress levels, 
σp and σq . therefore, the amount of interference is related to the maximum in­plane 
shear stress, which is given by 

1 
τmax = (σp − σq ). (12)

2 

The fringe patterns therefore provide a visual indication of the spatial variations in 
the maximum in­plane shear stress. 

Quantitative information on local principal/maximum shear stress levels may also be 
obtained from the fringe patterns. The difference in the levels of maximum shear 
stress at any two points, Δτmax , is proportional to the number of fringes, n, between 
the two points. The proportionality constant depends on the thickness of the planar 
body, h, and a fringe coefficient, f , characteristic of the birefringent material: 

nf 
Δτmax = . (13)

h 

The value of f for a given material may be determined from a stress calibration 
experiment on a geometry for which the stress distribution is known a priori. 
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Figure 6: Schematic of polarizer and analyzer set­up. 

Figure 7: Interaction of polarized light with loaded specimen prior to recombination 
after passing through analyzer . 
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7 Experimental Procedure 

Two experiments will be performed in this lab. In the first experiment, an aluminum 
plate of thickness h and width 2b, with a central circular hole of diameter 2a (see 
Figure 8a), will be subjected to elastic­level tensile load of magnitude P . Strain 
distributions will be measured using strain gauges attached to different positions on 
the plate. Local tangent strains, �θθ, will be measured at five positions (gauges #1, 
2, 3, 5, and 8, as detailed in Figure 9) along the ligament. An additional, remotely­
located strain gauge (#10 in Fig. 9), oriented parallel to the loading direction, will be 
used to obtain measurements of axial far­field strain. Exact positions of the gauges 
with respect to the hole are given in Fig. 9. 

Figure 8: Geometry of the plates tested in this module. (a) Plate with a circular hole: 
both an aluminum and a polycarbonate plate of this geometry will be tested. In the 
figure, the positions of strain gauges applied to the aluminum specimen are schemat­
ically indicated. Precise gauge locations are shown in Fig. 9. (b) Polycarbonate plate 
with a slot. 
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Figure 9: Positions of the strain gauges on the aluminum plate. 
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An experimental measure of the strain concentration factor, K�, can then be computed 
from the ratio of the maximum local strain at the notch root, �max , to the remote 
axial strain, �axial : 

�max
K� = .	 (13)

�axial 

Note that for this geometry, with purely elastic behavior and uniaxial tensile stress 
states, both locally on the notch surface and remotely, K� = Ktg . 

In the second experiment, a plate made of a transparent polymer, polycarbonate 
(PC), will be subjected to tensile loading. The geometry of the plate is identical 
to that of the aluminum specimen, except that it also contains a wide and narrow 
slot located above the circular hole. Birefringence patterns will be observed on the 
loaded plate using the set­up shown in Fig. 7. However, no attempt will be made 
to quantify the stress distributions associated with the fringe patterns. Instead, the 
fringes will be examined qualitatively to determine the approximate sizes of regions 
of stress concentration in the vicinity of the notch. The fringe patterns will also be 
examined to verify the applicability of the St. Venant principle. 

8	 Numerical Stress Analysis: 

Finite Element Solutions 

Today, most quantitative stress analysis is conducted using powerful computer tech­
niques; the most widely­used of these is the finite element method. In applications 
to isotropic linear elasticity, the method constructs an approximate (but [with suffi­
cient care!] numerically accurate) solution to the equations governing elastic boundary 
value problems. In practice, the approximate displacement field is constructed as a 
piecewise­continuous, low­order polynomial within small (but finite) “elements;” in 
two­dimensional models (e.g., plane stress), the elements are typically triangular or 
quadrilateral­shap ed. Figure 10 shows a mesh of quadrilateral elements used here to 
model the hole­in­plate tension specimen. 

As part of the output of the approximate solution, we can obtain color contour plots of 
the spatial variation of particular stress components. Figure 11 shows a detail of the 
variation of stress component σ22 when the far­field load is P = 10 kN , leading to a 
[remote] gross stress of σgross = P/2bh = 10.33 M P a (plate thickness is h = 6.35 mm; 
total plate width is 2b = 152.4 mm; hole diameter is 2a = 38.1 mm); Figure 12 shows 
a similar variation of shear stress component σ12. 

The contour plots can also be “sectioned” along a given path within the material, to 
plot the variation of a particular variable along that path. Figure 13 plots the “radial” 
variation (variation in direction x1) of normalized stress component σ22 across the 
minimum ligament at the horizontal center­plane of the specimen. The local stress 
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Figure 10: Finite element mesh used to generate approximate stress analysis solution. 

is normalized by the remote gross stress, σg = P/2bh. The peak value at the root of 
the hole is 3.26, dropping to 0.904 at the edge of the specimen. Figure 14 plots the 
normalized strain component �22 over the same region; here strain is normalized with 
remote gross strain, �g = σg/E. 

Commercial finite element packages typically have a large number of capabilities to 
enable experienced users to perform precise mechanical and thermal analysis in prob­
lems of great complexity; accordingly, the user­interfaces to these powerful packages 
often have substantially steep “learning curves.” We will be exploring use of the 
finite element method with “pdetool”, a MATLAB­based finite element package of 
limited capability, but with a simple and intuitive user interface. The software can be 
accessed within the MATLAB command window by issuing the command ‘pdetool’. 
More information on pdetool will be provided in lecture. 
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Figure 11: Contour plots of axial stress component Remote (gross) stress level 
P/ MPais σ∞ = 

Figure 12: Contour plots of shear stress component σ12. Remote (gross) stress level 
is σ∞ = P/(2bh) ≡ σg = 10.33 MPa. 
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Figure 13: Normalized stress distribution along minimum ligament. Normalization is 
P/ normalized ligament coordinate (

Figure 14: Normalized strain distribution along minimum ligament. Normalization 
is �22/(P/2Ebh) vs. normalized ligament coordinate (r − a)/(b − a). 
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