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1 Objectives 

In the mechanical testing performed to date, little explicit attention has focused on 
real­time histories of loading: tension and bending deformation have been imposed 
on a “laboratory time­scale”, and we have implicitly assumed that, for monotonic 
loading, the stress/strain response of the material under investigation does not depend 
strongly on the “time” parameter. For example, we have not considered the possibility 
that strain might continue to increase with time during extended periods of constant 
applied stress (“creep”), or that a structure subjected to a rapidly­applied imposed 
displacement which is then held constant in time might generate high initial loads 
(short­time), but show steady decay of load level with time (“relaxation”) over longer 
times. In this lab module, we will explore both of these types of material behavior 
for small deformations in various engineering polymers; the collective term describing 
such mechanical behavior is linear viscoelasticity. 

2 Lab Tasks 

In this laboratory module you will 

1. Briefly be introduced to the phenomena of creep and relaxation in viscoelastic 
polymers. 

2. Record	 data on room­temperature load relaxation in beam specimens of an 
engineering polymer subjected to an imposed mid­span bending displacement, 
and also to a beam specimen subjected to a history of imposed mid­span loading 
and unloading. The data will begin the quantification of linear viscoelastic 
behavior in the polymer, in particular, for low density polyethylene (LDPE). 
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3. Observe the frequency dependence of cyclic deformation in a viscoelastic poly­
mer. 

3	 Laboratory Assignment: Specific Questions to 

Answer 

1. Plot the mid­span deflection vs. time curve for the rapidly­applied mid­span 
loading applied to the LDPE beams, and use the correspondence principle to 
extract the creep function Jc(t). Is the response immediately following the 
removal of load consistent with the superposition principle? Discuss. 

2. Plot	 the load vs. time curve for the LDPE beam subjected to a suddenly­
applied mid­span displacement, and use the correspondence principle to extract 
an estimate of the relaxation function Er (t). 

3. How closely do the creep and relaxations functions come to satisfying the re­
ciprocal relation Er (t) × Jc(t) = 1? Is this satisfied better for short times? 
Discuss. 

4. Discuss how the relaxation data might be used to fit a linear viscoelastic three­
element model (standard linear solid) to the time­dependent relaxation modu­
lus, Er (t). 

5. Plot the steady	 hysteresis curves (elliptical loops of cyclic stress vs. strain) 
at different frequencies, ω. Does the phase lag δ(ω) exhibit expected trends? 
Discuss. 
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4 A Brief Background on Engineering Polymers 

4.1 Springs and Dashpots 

When a suddenly­applied tensile stress of magnitude σ is applied (say, at time t = 0), 
and then held constant with time, the resulting history of strain in a linear elastic 
solid (often idealized by a “spring” element) is simple: the strain �(t) = 0 (if t < 0 
corresponds to a time before application of stress), while �(t) = σ/E for times t > 0 . 
Here E is the constant elastic tensile modulus of the material; evidently, the long­term 
strain is simply constant. 

Conversely, when stress is suddenly applied to a linearly viscous fluid (as often ide­
alized by a “dashpot” element), the fluid undergoes time­dependent straining. The 
constitutive model of a linear viscous material can be idealized by the relation 

d�(t) 1 
�̇(t) ≡ = σ(t),

dt η 

where the viscosity η (dimensions: (t × (F /L2)); typical units: (sec M P a)) is a · 
constant for each fluid (and temperature!). Under the rapid stress­jump history pre­
viously discussed, the resulting strain history in a viscous fluid is 

� 
0 if t < 0 

�(t) = 
(t/η) σ if t ≥ 0 

Thus, while stress is maintained, linear viscous fluids continue to deform. 

It has been found, especially for polymeric materials, both engineered and natural, 
that the mechanical response under modest levels of stress contains elements of both 
the “linear elastic” and “linear viscous” idealizations noted above. Accordingly, the 
resulting behavior has been termed “linear viscoelastic”. 

4.2 Polymer Structures and Characterization 

Engineering polymers represent a broad class of engineering materials. They can be 
broadly categorized by features of the structures into which their long polymeric chain 
molecules are processed in the solid state. When the chains are randomly intertwined, 
the local structure is termed amorphous. If segments of polymer chains can locally 
come together in regular aligned arrays, those domains possess a sufficient degree of 
crystalline order to scatter light, x­rays, etc., and are hence termed crystalline regions. 
In general, the topological constraints on long polymer chains (think of a bowl of 
spaghetti!) prevent the chains from organizing completely into crystalline domains, 
so even when crystal organization is possible, polymers contain a substantial volume 
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fraction of amorphous, or disordered, material; thus, these polymers are termed semi­
crystalline. 

A second major organizing idea for categorizing amorphous polymers concerns the 
predominant type of bonding between chain segments. Relatively weak hydrogen 
bonds and van der Waals bonds permit easy relative motion of the disordered collec­
tion of chains, especially at higher temperatures. At sufficiently high temperatures, 
such polymers are viscous liquids, and they can be processed in the fluid state. Such 
amorphous polymers also have a characteristic glass transition temperature, Tg , 
near which their stiffness changes dramatically. Within a 10 to 20◦C interval about 
Tg , the elastic stiffness can change by a factor of ∼ 1000, with low­temperature, 
short­term elastic modulus of order ∼ 1 GPa well below Tg , and dropping to only 
∼ 1 MPa a few degrees above Tg . Since these polymers can be fluid­processed into 
molds at high temperatures, then cooled to stiff solid engineering materials, they are 
termed thermoplastic polymers. Both amorphous and semi­crystalline polymers 
can be thermoplastic, with the understanding that for the semi­crystalline polymers, 
the fluid processing must take place at a temperature above Tm, the melting temper­
ature of the crystallites; otherwise, the presence of the crystallites in a surrounding 
amorphous matrix would dramatically increase the viscosity to values too high for 
economic fluid­phase processing. 

Amorphous polymers do not scatter visible light; they are typically transparent, and 
examples of amorphous thermoplastic polymers include polycarbonate (PC), poly­
methyl methacrylate (PMMA), and polystyrene (PS). Such polymers are typically 
used at temperatures well below their respective Tg values (Tg is near 100◦C for PS and 
PMMA; for PC it is higher, near 150◦). Collectively, these are also sometimes termed 
glassy polymers, with the understanding that they are used at temperatures well 
below Tg , where their relatively high elastic moduli (of order GPa) is characteristic 
of the glass­like behavior. 

The crystallites of semi­crystalline polymers typically do scatter visible light; thus, 
they are generally opaque. Examples of important engineering semi­crystalline ther­
moplastic polymers are low­density polyethylene (LDPE), high­density polyethylene 
(HDPE), polypropylene (PP), polyamide (PA) (duPont trade name: “nylon”), poly­
tetrafluoro ethylene (PTFE) (duPont trade name: “teflon”), and poly­vinyl chloride 
(PVC). Each of these materials has some crystalline volume fraction, fc = Vc/(Vtot, .
and a remaining amorphous volume fraction, fa = 1− fc. In HDPE, fc = 0.90, while 
in PVC, fc is only ∼ 0.10; PA, LDPE, and PP typically have 0.65 ≤ fc ≤ 0.75. 
Recall, however, that the remaining amorphous volume fractions of each semicrys­
talline polymer must have its own glass transition temperature, Tg , and the operating 
temperature, T , of the amorphous/crystalline “composite” will greatly influence the 
stiffness of the amorphous domains, and thus, albeit to a lesser extent, of the overall 
polymeric material. For the amorphous portions of LDPE and HDPE, the respective 
Tg values are near −90◦C and −100◦C, while their crystalline melting temperatures 

.
Tm are near 115◦C and 135◦C, respectively. In contrast, for PA66, Tg = 57◦ and 
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Tm = 265◦C. Thus, the semi­crystalline polyethylenes operate at room temperature 
(∼ 23◦C) with their amorphous regions far into the viscous region, even though their 
larger volume fractions of crystalline order are well below their melting temperatures. 

For completeness, we note that another type of inter­chain bonding occurs in amor­
phous polymers: strong primary “cross­linking” bonds can be introduced via in situ 
chemical reactions: such amorphous polymers are called thermosets. Important 
examples include epoxies. Once the chemical cross­linking has been performed, ther­
mosets can no longer become viscous flowing fluids, even at very high temperatures: 
the primary bonds keep the chains from flowing past each other. Instead, the ther­
mosets char at sufficiently elevated temperatures. 

With this very brief background into the molecular structures of engineering polymers, 
we turn again to their mechanical behavior. From the discussion, we can expect that 
predominantly linear elastic response should be obtained from the crystallline regions 
and from the amorphous regions, providing the latter are well below Tg . However, 
near and, especially, above Tg , the amorphous domains will exhibit viscous flow­
type behavior that should be evident in the macroscopic time­dependent stress­strain 
relations of the polymer: one part of that behavior, generally valid for total strains 
less than, say, 0.01, is termed linear viscoelasticity. 

5 A Brief Introduction to Linear Viscoelasticity 

(See also: Dowling, Sections 5.2.2­5.2.4; 15.6.1; 15.10 
Crandall, Dahl, and Lardner, section 5.18) 

5.1 Stress Relaxation and Creep Compliance 

The fundamental linear viscoelastic response of a material can be experimentally 
obtained from 2 related, but distinct, types of tests. In a stress relaxation test, a 
(small) strain of magnitude �0 is suddenly applied at time t = 0; thus the history of 
imposed strain, �(t), is � 

0 if t < 0 
�(t) = 

�0 if t ≥ 0. 

The measured response to this imposed strain history is the stress history, σ(t). In 
general, σ(t) = 0 if t < 0, but will be non­zero and changing for times t > 0. Basic 
features of such a history are that the largest values of stress are recorded just after 
applying the strain (at t 0+), with a smooth, steady decay to lower values for →
longer times. We can extract the material stress relaxation function, Er (t), from 
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�

the data by defining 
σ(t)

Er (t) ≡ . 
�0 

The short­term value of the function is termed its ‘glassy’ response, Erg ≡ Er (t 0+), 
while its long­term value is termed the ‘equilibrium’ value: Ere ≡ Er (t →∞).

→ 

The second fundamental testing mode, called a creep test, consists of suddenly im­
posing a (small) constant stress, of magnitude σ0, at time t = 0. The resulting strain 
history, �(t), is recorded for times t ≥ 0. We define the creep function by 

�(t)
Jc(t) ≡ . 

σ0 

Major features of this function are a small, ‘glassy’ value just after loading: Jcg ≡
Jc(t 0+), and a steadily increasing value toward a long­time ‘equilibrium’ value, 
Jce ≡

→
Jc(t →∞). 

Viscoelastic behavior is said to be linear when the value of Er (t) is independent of 
the value chosen for �0 (similarly, when Jc(t) is independent of the magnitude of σ0). 
Thus, for example, if the response to a suddenly­imp osed strain of magnitude �0 is 
σ(t) = Er (t)(�0), then, for linear viscoelasticity, the response to a suddenly­applied 
strain of magnitude α × �0 would be α ×σ(t) = Er (t)(α × �0). Although it is generally 
found that 

Jcg = 1/Erg and Jce = 1/Ere, 

in general, for intermediate times t, 

Jc(t) = 1/Er (t), 

although in practice, the numerical difference between the two is seldom more than a 
few percent, so the two responses are sometimes used as if they were truly reciprocal 
in the time domain. 

5.2 Superposition Principle 

An important consequence of linearity of viscoelastic response is superposition. 
Suppose that an unstressed solid is subjected to a suddenly­applied stress jump, of 
magnitude Δσ1, at time t1 = 0, and stress is held constant at that value until the time 
t = t2 > t1. At time t2, another suddenly­applied stress change, of magnitude Δσ2 

occurs, and for times t > t2, stress is again held constant, but at the value Δσ1 +Δσ2. 
In this case, the resulting strain history will be 

�(t) = Δσ1Jc(t − t1) + Δσ2Jc(t − t2). 

Recall that the creep function is zero­valued when its argument is negative: thus, for 
times t less than t1, the argument t − t1 < 0, and no strain occurs. Similarly, the only 
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thing that matters for any given stress jump is the (positive) time interval since the 
jump was applied. Thus, the relevant time argument for response to the first stress 
jump is t − t1, and so on. The mathematical structure of linear viscoelasticity is made 
particularly evident when the special choice of Δσ2 = −Δσ1 is made, corresponding 
physically to sudden application of stress at time t1, followed by a subsequent rapid 
removal of that stress at time t2. (See Dowling Figure 5­5 for a graphical schematic 
of the resulting response.) 

5.3 Analogue Models of Linear Viscoelastic Response 

We can get a physical feel for linear elastic behavior by constructing simple analogue 
models constructed from assemblies of linear elastic spring elements and constant­
viscosity mechanical dashpots. While the parameters of such models (individual 
spring stiffnesses and dashpot viscosities) can be adjusted to best match experimental 
data, we emphasize that the agreement will be only qualitative at best, since the 
time­dependent behavior of the material itself is generally considerably more complex 
than can be represented by a simple analogue model. Nonetheless, we introduce a 
particular such model, termed the standard linear solid, in this section. 

This model consists of two springs and a dashpot, connected as shown in figure 1. One 
branch of the model consists of a single linear elastic spring. A second branch, loaded 
in parallel with the first branch, consists of a second linear elastic spring element 
in series with a linear viscous dashpot (such a series branch is termed a Maxwell 
model). Thus, the time­dependent total stress σ(t) carried by the two parallel­loaded 
branches is 

σ(t) = σ1(t) + σ2(t), 

where σ1(t) is the stress in the elastic branch, and σ2(t) is the stress carried by both 
members of the second (Maxwell) branch. 

The notion is that the total “strain” in the system, �(t), is applied to both branch 
number one (whose strain equals �1(t)), and to the second “branch”, whose strain is 
�2(t): 

�(t) = �1(t) = �2(t). 

Moreover, within the series spring/dashp ot branch number two, the strain is the sum 
of the elastic strain in the spring (σ2/E2) and the viscous strain in the dashpot: 

�2(t) = �spring2 (t) + �viscous (t) 

σ2(t) 
= + �viscous (t). 

E2 

Since the stress on the dashpot is also that within spring 2 (σ2(t)), we can as well 
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viscous

Figure 1: Three­element spring/dashp ot model of linear viscoelastic behavior: the 
standard linear solid. NOTE: the figure, as drawn, is slightly inconsistent 
with the narrative in that the figure indicates that “�2 ” is the (elastic) 
strain in spring number 2, while the narrative uses the term “�2(t)” to 
denote the sum of the time­dependent viscous strain and the elastic strain 
in spring 2. Please follow the narrative in relation to equations developed. 

sum their strain rates by differentiating the previous equation with respect to time: 

d�2 1 1 ≡ �̇2(t) = σ̇2(t) + σ2(t). 
dt E2 η 

Here we have made use of the viscous dashpot constitutive model �̇viscous (t) = ησ2(t). 
The stress in spring 1 (σ1(t)) drives linear elastic response in spring 1, resulting in 
�1(t) = σ1(t)/E1, an expression which can also be phrased in terms of strain rates 
and stress rates as �̇1(t) = σ̇1(t)/E1. 

Compatibility of the two branches of the assembly requires, in rate form, 

�̇(t) = �̇1(t) = �̇2(t), 

or 
1 1 1 

�̇(t) = σ̇1(t) = σ̇2(t) + σ2(t). 
E1 E2 η 

Finally, note that the total stress, σ(t), is the sum of the stresses carried by the two 
members in parallel: 

σ(t) = σ1(t) + σ2(t), 
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and in rate form

σ̇(t) = σ̇1(t) + σ̇2(t). 

These equations can be re­arranged substituted in to eliminate the “internal” stress 
values in favor of model constants and total stress and strain: 

σ2(t) = σ(t)− E1 �(t); σ̇2(t) = σ̇(t)− E1 �̇(t). 

Now consider the response of the 3­element model to the step­change in total strain, 
of magnitude �0, applied at time t = 0. Again, prior to application of the stress 
(t < 0), there is no stress or strain in any element, and σ(t) = 0. At times t > 0, 
the strain in spring 1 is simply �1(t) = �0, so the stress in spring 1 is constant, of 
magnitude σ1(t) = E1 �0. The total series strain of spring 2 and the dashpot is also 
constant, of magnitude �0, so that �̇series (t) = 0. Referring to the series strain­rate 
equation above, we are thus lead to a differential equation describing σ2(t) for times 
t > 0: 

σ̇2(t) + 
E2 

η 
σ2(t) = 0 ⇒ 

σ̇2(t) = − 
E2 

η 
σ2(t). 

This simple first­order ordinary differential equation leads to the decaying exponential 
solution form 

σ2(t) = σ2(t = 0+) exp−(E2/η)t , 

where σ2(t = 0+) is the stress in the series member at time t = 0+, just after sudden 
application of the total strain jump. A little reflection will lead to the insight that, 
since stress remains finite during the vanishingly small time interval of loading, the 
viscous dashpot contributes zero strain in the limit as t 0+; thus, at this short­time →
limit, the total strain in the series element is completely accommo dated by spring 2: 
�spring2 (t = 0+) = �0 and �viscous (t = 0+) = 0. Thus, using the elastic constitutive 
relation for spring 2 at time t = 0+ , 

σ2(t = 0+) = E2�spring2 (t = 0+) = E2 �0. 

On substituting this result into the decaying exponential form for σ2(t), there results 

σ2(t) = E2 exp−(E2/η)t �0. 

Finally, we can add the two stress contributions, σ1(t) and σ2(t), to give the total 
stress for this loading of the 3­element model as 

σ(t) = E1 �0 + E2 exp−(E2/η)t �0 ≡ Er (t)�0, 

where the relaxation modulus function Er (t) = E1 + E2 exp−(E2/η)t has short term 
value Er (t = 0+) ≡ E0 = E1+E2, and long­term value E = E1. Thus, r (t →∞) ≡ E∞ 
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E2 = E0 − E∞. Moreover, the system relaxes with a characteristic time constant “τ ”, 
where τ ≡ η/E2. Using these new variables, we can express the relaxation modulus 
of the model standard linear solid (SLS) system as 

Er(SLS) (t) = E∞ + (E0 − E∞) exp−t/τ . 

In this form, the 3 independent material properties of the model are long­ and short­
term elastic moduli, and characteristic relaxation time. 

Evidently, E0 = Erg and E = Ere.∞ 

A similar analytical treatment can be applied to extract the creep response of the 
standard linear solid when subjected to a suddenly­applied total stress, although the 
algebra is a bit tedious. 

5.4 Correspondence Principle 

Within linear viscoelasticity, we can make use of the corresp ondence principle 
to apply (known!) solutions for linear elastic structures in construction of the time­
dependent solutions for geometrically identical bodies made of linear viscoelastic ma­
terials. In particular, suppose that a simply­supp orted beam of length L is subject to 
a sudden application of mid­span displacement of magnitude δ; had the beam been 
made of linear elastic material, we are familiar with the relation between mid­span 
load, P , and mid­span deflection, δ, as 

P L3 

δ = ,
48EI 

where I is the area moment of inertia of the beam cross­section, and E is the (con­
stant) elastic modulus. We can re­arrange this equation to express the (constant) 
load in terms of the displacement as 

48EI 
P = δ. 

L3 

But now consider the same application of sudden mid­span displacement of magnitude 
δ to a linear viscoelastic beam. We can simply replace “E” of the linear elastic solution 
with Er (t) in order to calculate the time­dependent mid­span load, P (t): 

48Er (t)I 
P (t) = δ. 

L3 

Among the other features of the correspondence principle, one may note that all of

the strain components in the linear viscoelastic body have the same (constant) values
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that they did in the corresponding linear elastic solution; e.g., for 0 ≤ x/L ≤ 1/2,


x 
vviscoelastic (x, t) = velastic (x) = δ ( ) (3 − 4(x/L)2),

L 

while local time­dependent bending moment distribution in the beam, again for 0 ≤
x/L ≤ 1/2, is 

xP (t) 24xEr (t)I 
M (x, t) = = δ, 

2 L3 

and the time­ and space­dependent axial stress component in this end of the beam is 

y M (x, t) −24Er (t) 
�xy � �

δ 
�

σxx(x, y; t) = = .− 
I L2 L 

It would be tempting to extend the correspondence principle just illustrated to situ­
ations involving sudden application of stress (or load), (say, mid­span load suddenly 
increased to P0 and then held constant), and calculate the (now time­dependent!) 
mid­span deflection as 

(?) L3 

δ(t) = P0. 
48IEr (t) 

Regarding this enticing possibility, there is both “good news” and “bad news”. First 
the bad news: in general, the mathematics of linear viscoelasticity tells us that this 
formulation, where Er (t) describ es stress relaxation in response to a suddenly­applied 
strain, is not strictly applicable to the present case of a suddenly­applied stress. Now 
the good news: in practice, the “error” associated with doing this anyway (even 
though it is not rigorous) is typically small, so you can get good long­term and short­
term answers, with the largest of the (rather small) errors occurring at intermediate 
times when the system is changing most rapidly. 

With some reflection, you may surmise that the rigorous answer to the deflection of 
the beam with a suddenly­applied load comes from the creep function Jc(t); indeed, 
the time­dependent mid­span deflection is 

Jc(t)L
3 

δ(t) = P0,
48I 

and the stress and bending moment distributions are time­indep endent: 

P0 x 
M (x, t) = ;

2 

yM (x, t) xyP0
σxx(x, y, t) = = ,− 

I 
− 

2 

again in 0 ≤ x/L ≤ 1/2. 
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6	 Sinusoidal Loading of Viscoelastic Materials and 

Vibration Damping 

Because of the complex interplay of viscous and elastic deformation in linear vis­
coelastic materials, they exhibit an important phenomenon, termed damping, that 
relates to viscous mechanical losses during cyclic loading. Damping characteristics 
are particularly important in limiting the amplitude of steady mechanical vibrations 
in structures subjected to periodic forcing, and in rapidly diminishing the amplitude 
of transient free vibrations. 

Suppose that a linear viscoelastic material is subjected to a sinusoidal history of 
stressing, 

σ(t) = σa sin ωt, 

for a small stress amplitude, σa, and a given frequency of loading, ω (radians/second). 
The steady­state strain response of the material, after many loading cycles, will settle 
to a periodic response of amplitude �a, frequency ω, but with a phase shift of 
magnitude “δ”(radians), of the form 

�(t) = �a sin(ωt − δ). 

(See Dowling, section 15.10). 

The magnitude of the phase shift, δ(ω), depends on ω, the frequency of loading; in 
general, δ is very small for both very fast cycling (large ω), in which mostly glassy 
elastic response occurs, and also for very slow cycling (very small ω), for which mostly 
equilibrium elastic response occurs. For intermediate cycling frequencies, however, δ 
increases in magnitude; for a given temperature, typically a maximum value of phase 
shift (δmax ) occurs at a particular frequency, which can be termed ωd. (See Dowling 
Fig. 15.35). 

The magnitude of damping of vibrations is related to a measure Q−1 ≡ tan δ. Here 
Q is termed the quality factor, and is also related to the log decrement, Δt, by 

π 
Δt = π tan δ = . 

Q 

The physical significance of the log decrement to free vibration is that the ratio of 
successive­cycle vibration amplitudes, with, say, vibration amplitude (e.g., tip dis­
placement in a vibrating cantilever)“dn ” for cycle “n” and “dn+1 ” for cycle “n + 1”, 
decays according to � 

dn	
�

Δt = ln . 
dn+1 

Thus materials and structures with high values of tan δ (and thus small Q­values and 
large Δt­values) strongly damp out vibrations. Conversely, when δ is small, only light 
damping occurs. 
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