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Problem 1 (20 points) 

Note: for reference material, consult the laboratory write­up on elastic­plastic 
beam bending 

Consider the square cross­section beam shown, of dimensions h by h, subject to “diamond­
orientation” bending in the plane shown (neutral axis: plane y = 0). The beam can be 
considered to be composed of an elastic/perfectly­plastic material having Young’s modulus 
E , and tensile yield strength σy . 

1. Using the standard assumptions of engineering beam theory, evaluate the magnitude 
of applied moment, My , just sufficient to bring the most highly­stressed region to 
the verge of yielding. Express your answer in terms of h and material properties, as 
appropriate. (Aside: are you “surprised” by the value you got for I = 

� 
y2 dA in this 

orientation?) 

2. If the applied curvature is increased to very large values, the elastic/plastic bound­
aries (tension and compression sides) in this geometry, like those in the bending of 
rectangular cross­sections studied earlier, will move inward, toward the neutral axis. 
At “infinite” curvature, the boundaries will reach opposite sides of the y = 0 surface, 
resulting in tensile yielding stress values of magnitude σy in one “triangle” half of the 
cross­section, and compressive yielding stress values of magnitude −σy in the other 
triangular half of the cross­section. At this point, the bending moment carried by the 
cross­section reaches a limiting value, ML. Evaluate ML for this section. 

3. Using your answers to the two previous questions, evaluate the ratio ML/My for bend­
ing of this section. How does this value compare with the ratio for bending of this 
same cross­section, but on rotated axes, so that the cross­section appears as a square? 
(Our usual orientation for bending.) 

4. Compare My for the “diamond” cross­section with the corresponding My for the square 
orientation. What is the ratio of these first­yield bending moments? Explain why they 
differ in the way that they do. Evaluate the same ratio for the corresponding limit 
moments, and ML, and comment on reasons why they differ. Which axes should be 
used for applying bending moments to a square section, and why? 
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5. Discuss the residual stress state when the diamond­orientation is unloaded to M = 0 
immediately after being deformed to large curvature at M = ML. How does this 
residual stress state compare or contrast with the state for unloading of the square 
orientation from its limit value of M? Can any negative moment be applied to the dia­
mond cross­section after unloading from limit load, without causing further plasticity? 
Discuss 

Figure 1: Square cross­section of beam, oriented for bending along “diamond” orientation. 

Problem 2 (30 points) 

A great deal of the mechanisms and phenomenology of the strengthening of metallic crystals 
can be summarized in the following phrase: 

“Smaller is stronger . . .” 

Discuss three specific examples of strengthening mechanisms, and explain how 
and why the aphorism “smaller is stronger” applies to each strengthening mech­
anism. 
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Problem 3 (30 points) 

Standard cylindrical compression specimens have an initial height to diameter ratio of 
H0/D0 = 2. It is desired to conduct a compression test in a demonstration lab, and to 
compress the specimen to a final height of H = H0/2. 

From prior testing, it is known that the material has Young’s modulus E = 200 GP a, 
Poisson ratio ν = 0.3, and its plasticity can be well characterized by an initial value of 
tensile/compressive yield strength as s0 = 500 MP a, along with a constant hardening mod­
ulus, h = 2 GP a, governing the evolution of uniaxial flow strength, s, with equivalent plastic 
strain, �̄p, according to 

ds 
= h = constant. 

d�̄p 

In turn, this expression can be integrated to express the current value of strength, for any 
given value of �̄p ≥ 0, as 

s(�̄p) = s0 + h �̄p. 

The load cell on the testing machine to be used for the compression test has a maximum 
load capacity of 100 kN . 

You are asked to provide an answer to the following question: 

“What is the largest allowed value of initial diameter in a compression spec­
imen of this material (D0(max) ) that can be safely compressed to half its initial 
height in the testing machine?” 

In particular: 

•	 (10 points) Explain why the elastic strain is not an important feature in 
answering this problem. That is, explain why, for this application, you 
may assume that the material is rigid/plastic, so that the total strains and 
strain rates are essentially equal to the plastic strains and strain rates, 
respectively. 

•	 (20 Points) What is the largest diameter that can safely be used for the 
compression specimen, under the imposed conditions? 

HINTS: 

•	 Remember, for active yielding in uniaxial compression, the axial [true]stress, σ, is 
¯negative, so the yield criterion becomes s = σ = −σ. 

•	 For monotonic loading in compression, the plastic portion of the [true] axial strain, � = 
= 

. 

�(p), is negative, and is thus related to the equivalent plastic strain by −�(p) . −� = �̄p. 
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Problem # 4 (20 points) 

Long bars of an alloy steel are available in stock of rectangular cross­section, with [initial] 
thickness t0 = 25 mm and width w0 = 100 mm. It is desired to use these bars as tensile­
loaded truss members, and to be able to apply tensile loads up to Pmax = 1.1M N without 
causing plastic yielding in the bars. The initial tensile yield strength of the steel is σy = 
350 M P a. 

•	 Can the as­received bars support a load of magnitude Pmax = 1.1M N without 
yielding? How much tensile load can it support without yielding? 

•	 It is known that the tensile flow strength, s, of this steel increases with equivalent 
tensile plastic strain, �̄p, according to 

�p �N
¯

s(�̄p) = σ 1 + ,y 
c


where the strain hardening exponent is N = 0.14, and the constant c = 0.01. Someone 
suggests that it may be possible to cold­roll the bar stock to a new cross­sectional 
shape, of reduced thickness t, but essentially the same width, w = w0, and in the 
process generate enough equivalent plastic strain and associated strain­hardening so 
that the rolled bar stock can be used as truss members that can support tensile loads 
up to Pmax = 1.1M N without [further] plastic yielding, even though the rolling reduces 
the thickness and cross­sectional area of the bar. We will explore this possibility. 

First note that the equivalent plastic strain increment, d�̄p, can be expressed in terms 
of the cartesian components of the plastic strain increment tensor, d�

(p) 
ij	 , by 

3�3�2 
d�

(p)
d�

(p) 
. 

3 ij ij 
i=1 j=1 

Let the rolling direction (along the length of the bar) be cartesian direction number 
1, let the through­thickness direction be 2, and let the breadth direction be 3. In the 
process of rolling, there is an incremental reduction in thickness, dt < 0, so that 

d�
(p) 

= 
dt 

< 0.22 t 
.

As noted above, there is negligible transverse plastic straining in rolling, so d�
(p) 

= 0.33 

Assume further that rolling introduces no change in plastic shear strains (i.e., d�
(p) 

= 

d�
(p) 

= d�
(p) 

= 0).13 23 

Obtain an expression for d�̄p in terms of t and dt , and show how this ex­|	 |
pression can be integrated to give 

�pd¯ = 

2 
� 

t0
�(p)¯ = √

3 
ln . 

t 

HINT: something needs to be done about evaluating d�
(p) 
11 ... 
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•	 What is the maximum rolling­reduced bar thickness, t = tmax , which gives a 
strain­hardened strength s and rolling­reduced thickness t = tmax combina­
tion such that the cold­rolled bar stock does, indeed, support tensile load 
Pmx = 1.1MN without further yielding? 

Note: this part of the problem may best be solved by performing a set of numerical 
evaluations, for different values of thickness, and finding out which t­value answers the 
question. 
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