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Problem 1 (15 points)
The axial stiffness of the structure is:
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where A is the area of the cross section and L is the length of the beam. The bending
stiffness is defined as:

F
kbending = 5_3/7 (2)
y
where F), is the concentrated tip load, and ¢, is the related tip deflection. According to the
beam theory, we know that d, = gyELIS. Thus, the bending stiffness is:
F, F, 3ET
kbending =2 = Fyz3 - F (3)
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Combining Eq.1 and Eq.3, the ratio of a slender cantilever’s bending stiffness to its axial
stiffness is:
kbending _ % _ 31/14 _
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where [y = \/I/A. Since L > Iy, we find the above ratio is extremely small.

For a solid circular cross-section beam with diameter d, we have:
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Substitution of the A and I into Eq. 4, we have
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Problem 2 (45 points)
Part A:
No forces and moments are applied to the beam. And at any z, 0 < z < [, we have:

N=F,= /amdA =0, (8)
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and

M= [ on(-y)aa=0 (9)

The stress is a function of y, 0., = 0,.(y), and does not change along the x-direction. The
deformation is composed of two parts: the thermal part and the mechanical part, thus the
total stain at each point can be expressed as:

€(total) = €(mechanical) + €(thermal) (10)
where
€(mechanical) = U(?J)/E (11)
and AT
)
€(thermal) = aAT = C((ATO - h—/2> (12)

Meanwhile, since the beam deflects laterally with a constant curvature, K nermary, the total
strain of the beam can also be expressed as:

€total = €0 — K(thermal)ly (13)

where ¢ is the total strain for the mid-surface axial.

Oug(z
€0 = ao‘i ) = €0(thermal) — €total = €0(thermal) — K(thermal)Y (14)

From Eq.s 10, 11, 12 and Eq. 14, we have:

ATy
€0(thermal) — R(thermal)y = €(mechanical) + €(thermal) — U(?J)/E + &(ATO - h/2 ) (15)

Thus, the stress can be expressed as:

AT*y

Oz (y) = E[EO(thermal) — K(thermal)Y — a(ATO - h—/2)] (]-6)
Substituting Eq. 16 into Eq. 8, we have:
h/2 AT*y
Eb/ [GO(thermal) — K(thermal)Y — &(ATO - )]dy =0 (17)
—h/2 h/2
The integration of the linear terms in the above equation, —~K(hermar)y and AhT/;y, will be
zero, since the integral range is symmetric (from —h/2 to h/2). Thus we have:
h/2
Eb(EO(thermal) - QATO) / dy =0— €0(thermal) — &ATO (18)
—h/2
Another easier way to get this relation is that:
EO(thermal) - OCAT(?J - 0) - EO(thermal) - OéATO (19)

2



Substituting Eq. 16 into Eq. 9 we have:

h/2 AT*
Eb/ [GO(thermal) — K(thermal)Y — O‘(ATO - y)](_y)dy =0 (20)
—h/2 h/2
Considering that €yhermary = ATy, and [ y*dA =1 # 0, we get:
2AT*«
K(thermal) = h (21)
Part B:
Substitution of Eq. 18 and Eq. 21 into the expression of the stress, Eq. 16, we get:
2AT*« AT™
O2a(y) = E[aATy — y—a(AT) - = /2y ) =0 (22)
The axial stress in the thermally-loaded cantilever is zero everywhere.
Part C:
The tip deflection caused by the thermal load is:
1 AT*«
UAT(.CI? = L) = 5"4'(thermal)L2 = h L2 (23)
The tip deflection caused by the reaction force Ry, is:
Ry L?
(r=1L)= 24
/Uthp (x ) 3E[ ( )
The actual tip deflection is zero. By applying superposition, we get:
AT Ry, L3 3EIaAT™
0=var(r = L) +vg,,(xr=L) — L.l — Ry = et (25)
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Part D:
As shown in Part B, the thermal load does not generate stress, thus the stress field of this
tip- restrained thermally-loaded cantilever beam is the same as the beam is only subjected
to a tip load of Ry,. Since the sign of the tip-load is negative, Ry, is downwards and the
upper part of the beam is in tension and the lower pare is in compression. The bending
moment is expressed as:

M(x) = Ryp(L — ) (26)
The maximum tensile stress is at (x = 0,y = h/2), and value is expressed as:

Mt Ry, L2
Omaz = — 12 = — ”} 2 — gEozAT* (27)

Part E:
The problem requests that o, < 0, = 350M Pa, substitution of Eq. 25 into the above

relation, we have:
20y

3E« (28)
With £ = 210GPa and o = 12 x 1079/°K, we find the largest bottom/top difference in
temperature change, AT* = 92.6°K. So the largest bottom/top difference in temperature
change is 2 x AT* = 185.2°K
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Fig 01: The total deflection



Problem 3 (20 points)
The lattice-based prediction of the density of iron is:

6.02

B 2 % 55.847 % 10—23g
PFe = 5728663 x 10-27m?

= 7.88Mg/m? (29)

For Sodium chloride, there is one half atom (4 x 1/8) of both sodium (Na) and chlorine
(Cl) in each cell. The atomic mass for sodium is 22.99g/mol and 35.453g/mol for chlorine.

0.5 x (22.99+435.453) « 10723

g
PNaCl = 6£§m3 =2.17Mg/m? (30)
0

Solving the above equation, we got the estimated lattice spacing ry = 0.2818nm.

Problem 4 (20 points)

So = Erg (31)
Metal | E (GPa) | ag (A) | So (N/m)
Ni 214 | 3.1517 67.446
Al 70 | 4.0496 28.347
Pt 172 | 3.9231 67.477
Pd 124 | 3.8902 48.238
Cu 124 | 3.6151 44.827
Au 82 | 4.0786 33.445
Ag 76 | 4.0862 31.055

We can see that Au and Ag have the similar value in Sy and Ni and Pt have the similar
value in Sy. Conclusion: elements in the same column of the periodic table of elements tend
to have similar atomic bond stiffness (Sp)
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