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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
DEPARTMENT OF MECHANICAL ENGINEERING 

CAMBRIDGE, MASSACHUSETTS 02139 

2.002 MECHANICS AND MATERIALS II 
HOMEWORK NO. 2 

Distributed: Wednesday, February 18, 2004 
Due: Wednesday, February 26, 2004 

Problem 1 (15 points) 

The stiffness of a linear elastic structure subjected to a force of magnitude “F ”, which results 
in a displacement of the load point in the direction of the force of magnitude “δ”, is given 
by 

F 
.k ≡ 

δ 

Figure 1: Cantilever beam: a) axial loading; b) lateral loading. 

Consider the case when the structure is, say, a tip­loaded cantilever beam, as shown in the 
figure. Depending on the orientation of the applied load with respect to the beam axis, 
two different stiffness values result. When loading is parallel to the beam axis, the axial 
stiffness of the structure can be defined as 

Fx
kaxial ,≡ 

δx 

where it is understo od that δx is the axial displacement of the tip under load Fx. When 
the applied load is perpendicular to the axis of the cantilever, a bending stiffness can be 
defined as 

Fy
kbending ≡ ,

δy 
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where δy is the lateral displacement of the tip under transverse load Fy . 

The beam is of length L, and has cross­sectional area A and area moment of inertia I . 
Under the usual assumptions of slender beam­bending theory, L is much greater than linear 
dimensions of the beam cross­section, including both �1 ≡

√
A and �2 ≡

�
I /A; that is, 

L � �1 and L � �2. 

Show that the ratio of a slender cantilever’s bending stiffness to its axial stiffness is extremely 
small, and give a precise expression for this ratio in the case of a solid circular cross­section 
of diameter d � L. 
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Problem 2. (45 points) 

When a cantilever beam is subjected to a temperature change that varies linearly through 
its thickness (but does not vary along the length of the beam), the beam deflects laterally 
with a constant curvature, κ(thermal) , with resulting lateral displacement field 

1 
v(x) = κ(thermal) x 2 . 

2 

Similarly, the mid­surface axial displacement field is given by 

u0(x) = �0(thermal) x, 

where �0(thermal) is a dimensionless constant. Here it is understood that the base of the 
cantilever is at x = 0, while its tip is at x = L. 

Let the beam cross­section be rectangular, of width b (in z­direction) and thickness h (in 
y­direction), and let the temperature change vary linearly with the y­coordinate according 
to 

ΔT � y
ΔT (y) = ΔT0 − ,

h/2 

so that the temperature change at mid­thickness (y = 0) is ΔT0, at the bottom of the beam 
(y = −h/2) it is ΔT0 + ΔT �, and at the top of the beam (y = +h/2) it is ΔT0 − ΔT � . 
(Aside: according to Fourier’s law of heat conduction, linearly­varying temperature fields 
such as this are associated with a steady flow of heat from the higher­temperature region to 
the lower one.) 

•	 Show that the curvature of the thermally­loaded cantilever is given by 

2αΔT � 

κ(thermal) = ,
h 

independent of the value of ΔT0, and that the axial mid­surface strain is given by 

�0(thermal) = αΔT0, 

independent of the value of ΔT � . 

•	 Show that there is zero axial stress everywhere in the thermally­loaded cantilever 
just describ ed. 

If, instead, the thermally­loaded structure is also subjected to a boundary condition at its 
tip that requires zero lateral displacement (v(x = L) = 0), then non­zero reaction forces and 
axial stress will be generated. 

•	 Using [thermo­]elastic superposition, evaluate the magnitude of the tip reaction force, 
Rtip, required to bring the total tip deflection in the thermally­loaded and tip­restrained 
cantilever back to zero; i.e., 

0 = vtotal (x = L) = vΔT (x = L) + L),vRtip 
(x = 
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v(x=L)=0h

temperature change: linear in y

Figure 2: Tip­restrained cantilever beam subjected to a temperature change varying linearly 
with through­thickness coordinate, y: ΔT (y) = ΔT0 − (ΔT � y)/(h/2). 

where vΔT (x = L) is the tip displacement of the free thermally­loaded cantilever 
(above), and = L) is the tip displacement of the cantilever in response tovRtip 

(x 
lateral load Rtip applied at x = L. 

•	 Identify the location of maximum tensile stress in the thermally­loaded cantilever hav­
ing restrained tip displacement vtotal (x = L) = 0, and symbolically evaluate the tensile 
axial stress at that location. 

•	 Suppose that the beam with tip restraint is made of steel, with E = 210 GP a, α = 
12 × 10−6/◦K, and has dimensions L = 100 mm, b = 15 mm, and h = 3 mm. What is 
the largest bottom/top difference in temperature change, parametrized by ΔT � 

max , so 
that the steel does not reach a yield strength of σy = 350 M P a? 
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Problem 3. (20 points) 

The mass density of a crystal can be calculated from a knowledge of the unit cell of the 
crystal, the atoms within the cell, and their atomic weights. As an example, consider iron 
(FE), which has a body­centered cubic (BCC) crystal structure. A unit cell contains nine 
(9) iron atoms, with 8 of them located on the corners of a cube of edge length r0 = .2866 nm, 
plus one additional iron atom at the center of the cube. By translations of this unit cell in the 
three principal cube directions, an arbitrarily large crystal can be generated. Evidently, each 
corner atom of the cell “participates” in eight (8 = 23) different unit cells of this sort; thus 
only 1/8 of the mass of the corner atoms should be assigned to “this” unit cell. Reflection 
will show that the net number of iron atoms in the cell is 2 = 1 + 8 × (1/8), where “1” 
denotes the central atom. 

Mass density is defined as 
mass 

;ρ ≡ 
volume 

when applied to a unit atomic cell, we can generalize this result as 

�
i (atom/cell) × (mass/atom)

ρ = . 
volume/cell 

The atomic mass of iron (check out a periodic table) is 55.847 g/mol, and the Avogadro 
number is NA = 6.02 × 1023 atoms/mol, so the atomic mass of iron is (55.847/6.02) ×
10−23 g/atom. Show that the calculation outlined predicts a lattice­based estimate of the 
density of iron as 

ρlattice = 7.88Mg/m3 , 

which is slightly larger than the measured density of iron, 7.87 Mg/m3 . The slight dis­
crepancy is due to the presence of defects in the actual crystal; defects were ignored in the 
model. 

Sodium chloride (salt!) is an ionic crystal for which a simple unit cell can be constructed, 
consisting of alternating sodium (Na) and chlorine (Cl) atoms spaced a distance r0 apart 
along lines of a cubic grid. An 8­atom section of such a cell is shown. Assuming the density 
of salt is ρNaCl = 2.17 Mg/m3, estimate the lattice spacing, r0. 
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Figure 3: Unit atomic cell (BCC) for Fe. Dashed orange lines connect central atom to corner 
(Not all shown, for clarity.) atoms.


Figure 4: Unit atomic cell for NaCl. 
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Problem 4. (20 points) 

In our simple model of atomic spacing (r0) and atomic bond stiffness (S0), we argued that 
the elastic modulus, E, should scale as 

. S0
E = , 

r0 

and concluded that the orders of magnitude differences observed in E among solids, along 
with only a factor of two or so variation in r0, pointed clearly to the dominant role of bond 
stiffness, S0, in scaling elastic modulus. We further grouped dominant classes of [primary] 
bonds as covalent, metallic, ionic, and weak polarized bonding (van der Waals; hydrogen 
bonding). 

Although the extreme simplicity of the underlying model precludes much more precise eval­
uation, we can push things a bit further. Several metalic elements (nickel (Ni), gold (Au), 
copper (Cu), silver (Ag), aluminum (Al), palladium (Pd), platinum (Pt), and others) form a 
face­centered cubic (FCC) lattice, and are, of course metallic. Within a single crystal class 
(here, FCC), our model might lead us to expect that the inferred strength of the [metallic] 
bonding, S0, should not vary too much over the class. The table lists measured ambient­
temperature elastic moduli (E) and FCC lattice spacings (here denoted “a0 ” rather than 
“r0”) for some of the FCC metals: 

Metal E (GPa) a0 (Å) 

Ni 214 3.1517 
Al 70 4.0496 
Pt 172 3.9231 
Pd 124 3.8902 
Cu 124 3.6151 
Au 82 4.0786 
Ag 76 4.0862 

•	 Evaluate an inferred value for the bond stiffness parameter, S0, for each FCC material. 

•	 Do you observe any patterns in your results? For example, do particular pairs (or 
so) of metals give very similar results for S0? Although the precise nature of the 
connections resides in deeper within quantum mechanics, suffice it to say that location 
in the periodic table might have something to do with the answer... 

7



