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Problem 1 
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Figure 1: schematic drawing of Problem 1 

This beam is under bending and shear. Strain gauges are located at the top surface of 
the beam. On the top surface, there is zero transverse shear. Thus the beam is only in 
a stress state due to bending at the location of the strain gauges. We must know how to 
compute the stress due to a bending moment and relate that stress to the strain in order to 
solve this problem. 

First, the axial stress due to bending is 

π(x, y) = 
−M (x)y 

(1)
I


where I and y on the top of surface of the beam are the following


bh3 

I = 
12 

(2) 

h 
y = 

2 
(3) 

1 



M can be found via taking a section cut in the beam and balancing the moments. Be 
sure to use proper sign convention 

M(x) = −P (L − x) (4) 

Re-write (1) using (2), (3), (4) 

π(x) = 
−(−P (L − x))h 

=
6P (L − x) 

(5)
2 bh

3 bh2 
12 

This is in the Linear-Elastic regime so, 

π(x) = Eσ(x) (6) 

Re-write (5) with (6) to get 

σ(x) = 
6P (L − x) 

(7)
Ebh2 

We have two values of strains σ1 and σ2 at positions x1 and x2 so we now have two 
equations (7), (8), with three unknowns x1 , x2 , and P 

σ1 =
6P (L − x1) 

(8)
Ebh2 

σ2 =
6P (L − x2) 

(9)
Ebh2 

The third equation needed comes from the geometry condition given in the problem 
statement 

x2 − x1 = 200 × 10−3 = d (10) 

Now we just have 3 unknowns and 3 equations so it can be solved anyway you like. One 
was is shown below 

To solve for P , combine equations (8), (9), (10) 

6P 6Pd 
σ1 − σ2 = 

Ebh2 
(x2 − x1) = (11)

Ebh2 

Now solve (11) for P , and plug in values. We know 

2 



� 

� 

σ1 

σ2 

= 

= 

1200 × 10−6 

900 × 10−6 

then, 

P = 
(σ1 − σ2)Ebh2 

6d 

P = 
300 × 10−6 · 30 × 10−3[m] · (5 × 10−3)2[m2] · 208 × 109[N/m2] 

6 · 200 × 10−3[m] 
= 39[N ] (12) 

Knowing P we can get the positions of the strain gauges. Solve (8) for x1 . 

Ebh2σ1 
x1 = L − 

6P 
2

= 1[m] 
208 × 109[N/m2] · 30 × 10−3[m] · (5 × 10−3)2[m ] 1200 × 10−6 · 

− 
6 · 39[N ] 

= 1 − 0.8 = 0.2[m] (13) 

Now get x2 

x2 = x1 + d (14) 

x2 = 0.2 m + 0.2 m = 0.4 m (15) 

Problem 2 

The natural frequency of a simple harmonic oscillator depends on both the stiffness of the 
restoring (elastic) member in the system and the mass which is being accelerated/decelerated. 
For a rigid mass m connected to a massless spring of linear stiffness k (dimensions: force/length), 
having one end grounded while the other is attached to the moving mass, the natural fre­
quency is simply 

k 
δ = (16) 

m 

For the first-mode natural frequency of continuous uniform beam, δ0 , we have 

k 
δ = (17)

ρm 
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where ρ = 0.24. To see where it comes from, please refer to section 8 of Lab No.1 
handout. 

1). Estimate the first-mode natural frequency, δ0 

We are assuming that the antibody coating itself does not appreciably affect the natural 
frequency of the cantilever. So, based on the geometry of the beam, we have the beam 
stiffness, 

4P 3EI 3 100 × 109[N/m2] 4.10 × 10−26[m ]
[m ] = 1.23 × 10−2[N/m]3k = = = 

· · 
� L3 (100 × 10−6)3 

(18) 

where I is the area moment of inertia of the cross-section, which, for rectangular cross-
sections of this orientation, is equal to: 

3

I = 
bh3 

= 
15 × 10−6[m] · (320 × 10−9)3[m ] 

= 4.10 × 10−26[m 4] (19)
12 12 

with b the width and h the thickness of the beam. 

The mass of this cantilever is equal to its volume times its density, which is, 

m = �V = � L b h = 3.1×103[kg/m3] 100×10−6[m] 15×10−6[m] 320×10−9[m] = 1.49×10−12[kg]· · · · · ·
(20) 

Substitute eqn 18 and eqn 19 into eqn 17, we have the first mode natural frequency of 
this microfabricated cantilever, 

k 1.23 × 10−2[kgm/s2 √ N/m] 
= 1.85 × 105[rad/s]δ = 

ρm 
=

0.24 1.49 × 10−12[kg] 
(21) 

· 

2). Frequency change from the added mass, �δ 

According to eqn 18 and eqn 21, the natural frequency of a cantilever is 

3EI 1 EIL 
�

EIL 1 
δ = (22)

ρL3m 
� 

L2 m 
� 

L2 
�

m 

The sought-for bacteria will preferentially attach themselves to the antibody coating on 
the surface of the cantilever, in the process increasing the vibrating mass of the cantilever 
by an amount �m = nbmb, where nb is the number of bacterium cells that attach, and mb 

is the mass of the bacterium cell. 
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We are assuming the added mass �m is uniformly distributed along the length of the 
beam, and further, assume that the presence of the adhered bacteria does not affect the 
stiffness of the beam. From Eqn 22, the change in frequency resulting from the add mass 
can be expressed by 

. 
�

EIL 1 . 
�

EIL 1 δ0
δ0 + �δ = = � = � (23)

L2 
�

m + �m L2
�

m 1 + �m 1 + �m 
m m 

1 
For the function of (1 + �m )− 

2 , if the change of in total mass (�m) is very small in 
m 

comparison to the initial beam mass (m), then it can be expanded by taking a Taylor series 
expansion. The general Taylor series expansion has the form of 

f (n)(x)� 
f(x + �x) = 

n! 
�x n 

n=0 

= f(x) + 
f �(x) 

1! 
�x + 

f ��(x) 
2! 

(�x)2 + 
f ���(x) 

3! 
(�x)3 + .... 

= f(x) + 
f �(x) 

1! 
�x + O(x 2) 

. 
= f(x) + 

f �(x) 
1! 

�x (24) 

In our case, 

(1 + 
�m 
m 

)− 1 
2 

.
= 1 − 

1 
2 

�m 
m 

if 
�m 
m 

≤ 1 (25) 

Then, the change in frequency resulting from the adding mass can be expressed as the 
following 

. 1 �m 
δ0 + �δ = δ0(1 − ) (26)

2 m 

3). Evaluate the change in natural frequency for the bacterium-coated cantilever 

For each bacterium cell, we assume it is spherical, with the diameter, Db = 1µm. Its 
density, �b, is equal to that of water, i.e. 1.0 × 103kg/m3 . An estimate of each cell’s mass is 

4 D . 4 3mb = �bV = �b �( )3 = 1.0 × 103[kg/m3] �(
1 × 10−6 

)3[m ] = 5.24 × 10−16[kg] (27)
3 2 

· 
3 2


The total mass of all the bacterium cells, which is the ”added mass”, is
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Problem 3 (30 points)

In this problem, the CNT(Carbon nanotube) can be assumed to be a cantilever beam.

For elastic response, the lateral displacement of the cantilever v(x) is related to the
bending moment by

d2v(x)

dx2
=

M(x)

EI
=

P (a − x)

EI
(30)

where a is the distance from x = 0 to the loading point. In the following derivation, x will
be only in the range of 0 � x � a.

6

Figure 2: Scanning electron microscope images of E. coli bacteria attached to various micro-

fabricated resonating cantilever beams. (from: Ilic, et al., Applied Physics Letters, 77, #3,

2000, 450-452. 

�m = nbmb = 100 · 5.24 × 10−16[kg] = 5.24 × 10−14[kg] (28) 

Using eqn 26, and assuming the cell ”added mass” is uniformly distributed over the 
surface of the beam, the change in natural frequency is 

. 1 �m 1 5.24 × 10−14[kg]
�δ = δ0(− ) = 1.85 × 105[rad/s] · (− 

2 1.49 × 10−12[kg]
) = −3.25 × 103[rad/s] (29)

2 m 

Please be noticed that the frequency, f , in units of [cycles/sec] (or [Hz]) is related to 
the angular frequency (or radian frequency), δ, by f [Hz] = δ[rad/s]/(2�[rad/cycle]). 

Image removed due to copyright considerations.
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Problem 3 

l 

P 

t 

w 

Remember that k , the stiffness, is a function of structure parameters such as geometry. 

That is, for the same material, two beams with different widths for example will have 

different stiffnesses. 

Young’s modulus, on the other hand, depends ONLY on the material and thus is a 

material property. Finding a way to correlate these two is a reasonable approach to 

solving this problem. 

From the definition of stiffness, 

P
k = � P = k � d (1)

d 

Furthermore, as we learned in class and in the lab, the following is true: 

l P 3 3 � I E � d
d = � P = (2)

l 33 � E � I 

� � -6 � 
3 3 

-23 4t w 3 10 50 (m ) � ( 10 0.2 -6 ) (m )
= 10 33.3 (m )where I = = � 

12 12 

Setting (1) equal to (2) we get: 

10 107 3 9 �� 
N �

� � 10 50 (m ) � ( 10 2 -6 ) (m )� � � -6 � 
3 3 

3 � I E � d Ł m 2 łk � d = � k = = 11.0 N m (3) 
� 

3 3l 3 
12 � ( 10 460 -6 ) (m ) 



� � 

� � 

From Equation 3, it can be concluded that k is proportional to the width and 
3 3( thickness ) of the beam and inversely proportional to the ( length ) . Therefore, to get the 

minimum stiffness, we need to use the minimum width and thickness and the maximum 

length for our calculations using Equation 3 and vice versa for the maximum stiffness. 

More specifically: 

210 107 3 9 N � � 
3 

k 
m � 10 47 -6 � ( 10 5.1 

min = 
� -6 ) m3

12 � ( 10 465 

-6 )
= 04.0 N 

and 

210 107 3 9 N � � 
3 

m � 10 53 -6 � ( 10 5.2 
= mk max 

12 � ( 10 455 -6 )
-6 )

= 24.0 N 
� 

3 

Problem 4 

Let’s derive the necessary results instead of using Table 8.1 in CDL. 

For beam (a), using the sign convention found in CDL, we have: 

( ( (Force balance: 
dV

dx 
( x )

+ x q ) = 0 � 
dV

dx 
( x ) 

-= x q ) --= w ) = w � V ( x ) = w � x + C 1 (1) 

(Boundary Condition: L V ) = 0 � C -= w � L1 

(Thus, x V ) = w � x - w � L (2) 

Moment balance: 

( w � x 2dM ( x )
+ x V ) = 0 � 

dM ( x )
= w � ( L - x ) � M ( x ) -= + w � L � x + C 2 (3)

dx dx 2 

Boundary Condition: M ( L ) = 0 � C -= 
w � L 2 

2 2 

w � L 2 

Thus, M ( x ) -= 
w � x 2 

+ w � L � x - (4)
2 2 

Converting it to an equation with dimensionless parameters for graphing purposes: 



� 

= � � � - - � 
� 

� 

� x � x 1M ( x ) 
-= � � 

2 

+ - (5) 
w � L 2 Ł L ł L 2 

From Equation 3, we can conclude that M ( x ) is a strictly increasing function 

since 0 £ x £ L . Thus, M min = M ( 0) -= 
w � L 2 

(6)
2 

From the moment-curvature relation and Equation 4: 
2 (x v d )

= 
M 

� 
dv ( x ) 1 � w � x 3 w � L � x 2 w � L 2 � x 

�
�

+ C 3 (7)
dx 2 I E dx 

= 
I E 

�
Ł
��-

6 
+ 

2 
-

2 
� 

� � ł 

dv ( x )
Boundary Condition: = 0 � C 3 = 0

dx x = 0 

Thus, 

3 2 2dv ( x ) 1 � w � x 
+ 

w � L � x w � L � x �
� �dx I E Ł 6 2 2 ł (8) 

� x v ) = 
1 � w � x 4 w � L � x 3 w � L 2 � x( � ��- + -

4

2 

ł
��
� 

+ C 4I E Ł 24 6 

Boundary Condition: v ( 0) = 0 � C = 04 

w 4 2 3(Thus, d ( x ) -= x v ) = � ( x + 6 � L 2 � x - 4 � L � x ) and d = 
w � L 4 

(9)
24 � E � I max 8 � E � I 

Again, normalizing this equation for graphing purposes yields 

I E � d ( x )
= 

1 
� �
� x 

�
� 

4 

-
1 

� �
� x 

�
� 

3 

+ 
1 

� �
� x 

�
� 

2 

(10) 
w � L 4 24 Ł L ł 6 Ł L ł 4 Ł L ł 

The following figure summarizes the deflection and moment profile along the beam 



Let’s use the principle of superposition for part (b)


This problem can be broken into two parts: a beam with a uniformly distributed load and 


an identical beam with an unknown tip load RL . We know the deflection d1 and bending 


moment M for the first part from part (a) (Equations 4 & 8) and for the second part ( d 21 

and 2M  accordingly) from the lab handout: 

( ) ( ) xLRx M L -�= (9) 

( ) ( ) 
E I 

xLxR 
x L 

�� 
-��� 

-= 
6 

32 

d (10) 

Make sure you use consistent sign convention. The assumption here is that this is an 

upwards-directed tip load. 

By superposition: 

( ) ( ) 
E I 

xLxR
x L Lx 

E I 
x w L 

total �� 
-��� 

-��-�+� 
�� 

� 
=+= 

6 
3

46 
24 

2 
22 

2 

21 ddd 
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� 

where RL is unknown. Using d total = 0 in the equation above we get
x= L 

3 � w � L
RL =  and total displacement becomes:

8 

2 2d total = 
w � x2 

( 2 � x - 5 � L � x + 3 � L ) (11) 

¢ 

48 � E � I


2 2
and d total = 
w 

� x � ( 8 � x -15 � L � x + 6 � L ) = 0 (12)
48 � E � I


L � ( 15 -

which has two roots in 0 £ x £ L : x = 0 and x = 

33) 
, which is also the point

16 
4w � L

where deflection is maximum d total max _ » 005.0 � 
E � I 

Similarly for the bending moment: 

M total = M 1 + M 2 -= 
w � x 2 

+ w � L � x -
w � L2 

+ 
3 � w � L 

� ( L - x) (13)
2 2 8 

3 � w � L 5 � L
and M total -= w � x + L w - = 0 � x = 

8 8


9 � L w 2


=Thus, M total _ max 128 




