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Problem 1 (35 points) 

A cantilever beam has been constructed from a steel having Young’s modulus E = 208 GP a, 
Poisson ratio ν = 0.29, and tensile yield strength σy = 410 M P a. The length of the beam, 
from its base to its tip, is L = 1 m, and the uniform cross­section is rectangular, h = 5 mm 
thick and b = 30 mm wide. 

Two axially­mounted strain gages have been mounted on the top surface (y = h/2). The 
precise absolute axial position “x” is not known for either gage; however, it is known that 
the two gages are spaced an axial distance of � = 200 mm apart along the length of the 
beam. 

A tip load of magnitude ‘P ’ is applied to the cantilever, acting in a direction parallel to the 
y­axis, causing the two gages (#1, which is nearer the base of the cantilever, and #2, which 
is nearer its tip) to register the following strain values: 

Figure 1: Schematic of tip­loaded cantilever showing positions of strain gages numbers 1 and 
2. 
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Gage no. axial coordinate strain 

1 x1 =? 1200 × 10−6 

2 x2 = x1 + 200 mm 900 × 10−6 

•	 (20 points) Evaluate the load P . 

•	 (15 points) Using the (now­known) value of P , find the axial locations (x1 and x2) 
of both gages. 
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Problem 2. (25 points) 

There is current interest in the use of microfabricated cantilever beams in detecting the 
presence of bacteria in a liquid solution. Following fabrication of the cantilever, its surface 
is coated with an antibody that is specific to the presence of the bacterium of interest, and 
the free vibration characteristics of the cantilever (its first­mo de natural frequency, ω0) is 
recorded experimentally. 

Then the coated cantilever is exposed to a liquid medium. If the sought­for bacteria are 
present in solution, they will preferentially attach themselves to the antibody coating on the 
surface of the cantilever, in the process increasing the vibrating mass of the cantilever by an 
amount Δm = nb mb, where nb is the number of bacterium cells that attach, and mb is the 
mass of the bacterium cell. 

Figure 2: Scanning electron microscope images of E. coli bacteria attached to various micro­
fabricated resonating cantilever beams. (from: Ilic, et al., Applied Physics Letters, 77, #3, 
2000, 450­452. 

Subsequent testing of the added­mass cantilever should reveal a progressively decreasing 
natural frequency as more bacterium cells are added. 

The cantilever of interest has been fabricated of silicon nitride, having a mass density of 
ρ = 3.1 × 103 kg/m3 and Young’s modulus of E = 100 GP a. It has a uniform rectangular 
cross section, of thickness h = 320 nm, width b = 15 µm, and total length L = 100 µm. 

•	 Assuming that the antibody coating itself does not appreciably affect the natural fre­
quency of the cantilever, estimate the first­mode natural frequency, ω0, of the cantilever 
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in the absence of adhered bacteria. (Note: please refer to the Lab 1 Handout Notes on 
vibration of cantilever beams for relevant analysis.) 

•	 Assume that the added mass Δm = nbmb is uniformly distributed along the length 
of the beam, and further, assume that the presence of the adhered bacteria does not 
affect the stiffness of the beam. Let the total mass of the coated beam be m = ρbhL; 
assuming that Δm � m, show that the change in frequency resulting from the added 
mass, Δω, can be expressed by 

. 
�

1 Δm 
�

ω0 + Δω = ω0 1 − . 
2	 m 

–	 Hint # 1: You might wish to show that the natural frequency of a uniform beam of 
total mass ‘m’ can be written as ω ∝ (1/L)2 

�
EIL/m (neglecting dimensionless 

factors). 

–	 Hint # 2: If the change in total mass (Δm) is very small in comparison to the 
initial beam mass (m), then the resulting frequency of the perturbed­mass system 
can be evaluated by taking a Taylor series expansion of the frequency expression 
about the reference mass. 

•	 Assume that the cantilever has been covered by nb = 100 bacterium cells. From the 
figures, it appears that the diameter, Db, of each bacterium cell is near Db = 1µm; 
assuming each cell to be spherical and to have a mass density, ρb, equal to that of water, 

.
justify an estimate of each cell’s mass as mb = 5.24 × 10−16 kg. Using this estimate, 
and assuming that the cell “added mass” is uniformly distributed over the surface of 
the beam, evaluate the change in natural frequency that you can expect to see for the 
bacterium­coated cantilever. 
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Problem 3. (20 points) 

Atomic force microscopy resolves the structure of surfaces to near atomic­level resolu­
tion. A key structural element of an atomic force microscope (AFM) is a small cantilevered 
beam fabricated from a material such as silicon using lithographic technology (e.g., precision 
etching). The beam has a sharp­tipped diamond stylus at its tip, the stylus is tracked across 
the specimen surface, and very local surface interactions between the tip and the specimen 
surface cause the tip of the cantilever to deflect. The magnitude of the tip deflection is mea­
sured by reflecting a laser beam off its back side and imaging the location of the reflected 
light. The tip/surface forces are computed from the deflections using beam theory, and they 
are used to map the structure of the surface. 

Figure 3 shows a small rectangular cross­section cantilever from an atomic force microscope 
(AFM) that has been machined from a single block of silicon using lithographic technology 
(e.g., precision etching). The nominal dimensions of this cantilever are length � = 460 µm, 
width w = 50 µm, and thickness t = 2.0 µm. Elastic constants of silicon are Young’s modulus 
E = 107 GP a, and Poisson ratio ν = 0.2. 

The stiffness k = P/δ of the AFM cantilever is an important design parameter. 

•	 (10 points) Compute the stiffness of this AFM cantilever. 

•	 (10 points) Unfortunately, dimensional tolerances in the etching technique inevitably 
lead to a range of dimensions over a population of the AFM cantilever products. The 
manufacturer quotes the following tolerances for this cantilever: � = 460 µm ± 5µm; 
w = 50 µm ± 3µm; and tmin = 1.5 µm ≤ t ≤ tmax = 2.5 µm. Accordingly, the stiffness 
of any given cantilever can vary from its nominal value, depending on its actual di­
mensions. Provide estimates of the minimum and maximum stiffnesses, kmin 

and kmax , that can be expected is this cantilever, corresponding to extreme ranges of 
the dimensions. 

5 

 
Image removed due to copyright considerations. 



Problem 4 (20 points) 

CDL Problem 8.15 

Hint/suggestion: Problem 8.15a is the continuation of the “self­weight” cantilever problem 
we looked at in the lecture. You should be well on the way to solving for its moment 
distribution, and then you should be able to follow the procedures adopted for the tip­
loaded cantilever to calculate the corresponding lateral displacement distribution, v(x), and 
anything else needed. 

Problem 8.15(b) is statically indeterminant, meaning that there is no direct way to evaluate 
its bending moment distribution, M(x), without simultaneously considering the displace­
ment distribution, v(x). There are two straightforward ways to approach such statically 
indeterminant beam problems. 

•	 Combine CDL equations 3.11 and 3.12 to obtain 

M ��(x)− q(x) = 0 M ��(x) + w = 0,⇒ 

and then use M(x) = EIv��(x) to obtain 

w 
v����(x) + = 0. 

EI 

From here on, there are 4 integrations, 4 constants of integration, and 4 boundary 
conditions (on v(0), φ(0), M(L), and v(L)) to determine the constants. It will work, 
but the algebra is deadly dull. 

•	 On the other hand, you can use the principle of superposition. In this case, observe 
that the stated problem is equivalent to a cantilever, subject to (a) the distributed 
loading q(x) = −w, AND to a concentrated upwards­directed tip load, of [unknown] 
magnitude RL. The total vertical tip displacement of the cantilever is vtotal (L) = 0 
and by superposition, 

0 = vtotal (L) = vRL (L) + vq (L), 

where it is understood that there is a downward tip displacement, vq (L) < 0 (from 
problem 8.15a), as well as an opposite­direction tip displacement, vRL > 0, from the 
unknown positive­upward tip reaction force, RL. This leads to a simple linear equation 
to solve for RL; once RL is obtained, all parts of the solution to 8.15b are known by 
superposition... Try whichever method suits you. 
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