2.001 - MECHANICS AND MATERIALS I
Lecture #15
11/1/2006
Prof. Carol Livermore

Recall equations of isotropic linear elasticity:

1T
€xx = E Oxx — V(Uyy +Uzz)
1T .
Cyy = L (Twy T V(Oaw + 022)
17
€z = E Ozz — V(Umc +Uyy)
1
€xy = ﬁam’y
1
€xz = ﬁgacz
1

Thermoelastic Behavior:

AT >0
L — L+ aATL

« is the coeflicient of linear thermal expansion ”CTE”.

Thermal Strain (For an unconstrained block)

el = aAT
egy = aAT
el = aAT



Ogx = Oyy = Ozz = Ogy = Oy = Ogz = 0
Note: If the block were constrained, there could be a ”thermal stress.”

Total Strain:

Elastic Thermal
€xe = €pp + €p
_ B T
Eyy = €yy T €y

_ E T
€zz = €4 + €2z

Equations of Linear, Isotropic, Thermoelasticity

1
— {am —v(oyy + Uzz):l +aAT

€xx = E
1
‘w=F% |:O'yy —V(0ze + ozz)} aAT
1
€z = [azz —vV(0ge + ayy)} aAT
1
€xy = ﬁo—my
- 1
ECEZ - QGO—IZ
1

€yz = 2G0yz

EXAMPLE: Block in a frictionless channel

/
V
A lE Y 7 ik

Subject block to an increased T', AT > 0
Find €7, o
€xx = 0 Ogpqx = ?
€yy =7 0yy =0
€z =71 0,,=0
Use equations of linear, isotropic, thermoelasticity

1
€xp = E Opw — V(Oyy + 04,) | +aAT
Oyy — 0
0., — 0



Ozx

0= i3 + aAT = 04, = —aATE
1
= g |:O'yy —v(0ge + crzz)} +aAT

€yy = [_El,/am +aAT = ¢, = %’(—aATE) + QAT

1
=% |:O'zz —v(0zs + oyy)} +aAT

€22 = _%O’xm +aAT =€, = %(_QATE) + aAT

So:

€yy = €22 = (v + 1)aAT
Superposition of the thermal strain and poisson effect from the ”thermal stress”

(0pz)-

EXAMPLE:

(ko r.

v,

Subject bar to increased T', AT > 0
Q: What is the displacement (%) of B.

FBD:
i
i ] e >
Tﬂ- e
Equilibrium:

S -
Fy+Fc=0
Fa=—Fg

2 Unknowns, 1 Equation



Force-Deformation Relationships (Constitutive Relationships)

1
€xxy = E (gwwl - Vl(ayyl + UZZl)) +041AT

€xaxy = E; Ogz, + CtlAT
1
€xaxy = 75 (JILEQ - VQ(Uyyz + JZZQ)) +a2AT
Ey
1
€xay — B, Ogay T OéQAT
Compatibility
==t 1
.2
(51 = uf
(52 = 7’[1,5
So:
01 = —02
Recall, for uniaxially loaded bar:
L8
xrxr — L
So:
6 = €peL
Thus:
(51 = walL



52 = 61:302 L

So:
€xa; L = —€x3, L
€xx1 — “€xay
Also, for uniaxially loaded bar:
P
Ogx = —¢
A
So:
Fy=—-04,A
FB = OwwlA
Rewritten Equilibrium:
—Opp, A= —0pa, A

Ogay = Ogz, < BEquilibrium

Substituting Compatibility into Force-Deformation:

1
—€gxy = Eaxxl + a1 AT

1
—€zz, = E—Qawwz + as AT

Solve for 044, :

Oxxy = 7E1(6z11 + OélAT)

Substitute into equilibrium:

Ogxy = _El(eng + alAT)

Back substitute into force-deformation:

1
o = T (—Er(€zay + a1AT)) + o AT
—-FE E,
€xxy = E72€m;2 - EalAT + a AT



E; E;
14+ — ey, = —— a1 AT AT
< +E2)e R E2a1 + as

Ei+ E, —FE -k
— T Crp, = AT AT =
z, €xao 5, (o751 + a9 ( 5,

E E - F
€ony = 2 < 2002 1a1>AT

a1 + a2> AT

B+ Es —FEy
Eyan — Eras
poy = 202 2102 A
Caa By + By

Recall 6 — € Relationship:

Eyop — Eian

ATL
B+ By

52 = emmgL =

So:

Fio1 — B>
B 100 202
u, = ————=ATL
z Ey + Es

Thin Walled Pressure Vessels

t << R < Thin Walled Vessel

Soda cans, pipes, balloons, etc.

Approximations for thin-walled:
r &~ R within the walls



o ~ uniform through the wall thickness
€ ~ uniform through the wall thickness

e

FBD of End Caps

e
4
E
000 (2TRt) — P(TR?*) =0
PR , .
Opz = ET3 Axial Stress
]
Ignore ends:
FBD:
%l



ZFyzo

—opeLt(2) + P(2R)L =0
P
Oy = TR Hoop Stress

Stress in radial direction:

o
-[ D
T
r&m e
0.
- L -
! — W\ e
po= L
O-’I"T‘ - p

So anywhere through thickness:

[(0rr)maz| =p

Note: 0, << Opz,000-
p << # since R >> t, % >> 1.
So approximate o, &~ 0 =. This is in plane-stress.

What about strain in a thin walled cylinder?

ou
€00 7é 3700

A circumference 27AR

€00 = — =
circumference 27T R



€00 =

ewm -

BN

0 0
[c]=10 0
R
0 5
Apply constitutive relationships.
1
€99 — E(JGO - V(Uzz + Jrr)) + AT

1
I— E(Um —v(oge + 0pr)) + AT

o — 0



