2.001 - MECHANICS AND MATERIALS I
Lecture #14
Prof. Carol Livermore

Recall from last time:
Normal strains, changes in length

A(2,y,2) = up(z,y, 2)i + uy (2,9, 2)] +us(2,y, 2)k
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Shear Strain
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What kind of strain you see (normal vs. shear) and its magnitude depend on
the relative orientation of deformation and coordinates.

EXAMPLE:
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Relationship between o and e
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Recall uniaxial loading:

e=0/L
€xx = 0/L
oc=Fe=0,, = Feyy

00 = Fezy

Look at thicker bar:
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€oa = T3 €y = — (something)



In this case:
€xz = €azial

€yy = €lateral

€lateral = —V€amial, Wherev is Poisson’s Ratio (unitless).

Typically v ~ 0.3
Range 0 <v <0.5
Note: ¥ = 0.5 = incompressible

Microstructure view of Poisson’s Ratio
Recall Young’s Modulus
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Vertical bonds do not extend
Diagonal bonds do extend
May be able to minimize energy
This leads to Poisson’s ratio, how this bond stretching energy is minimized.

Equations of Linear, Isotropic Elasticity
Linearity (E,v are not a function of loading)
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Superposition (A property of linearity)

Oq = €q
Op = €p

ao, + Bop, = ae, + PBep, a and § are scalar constants.



Isotropic:
Material properties are the same in all orientations.
Examples of anisotropic materials
Wood (against the grain, with the grain)
Single crystals (depends on which crystal direction)
Relationship between o and e (the constitutive equations) is not orientation
dependent.

Elastic:
Deformation is removed when load is released (deformation is fully recover-

able)

_ Oazial . iaxial loadi
€axial = n uniaxial loading
€lateral = —V€axial
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€pp = yo] Opx — V(Oyy +022)
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€rr = ) _azz —vV(0gs + O'yy)-

Multi-axial stress-strain relationships among normal stresses and strains for lin-
ear isotropic elastic materials.

What about shear stresses and strains?
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Ozy = Gy Where G is the shear modulus with units of Pa
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For linear, isotropic elastic materials, 2 material constants fully define a mate-

rial.
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Equations of linear isotropic elasticity (aka. Constitutive Relationships)
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Opx — V(Oyy +022)
Oyy — V(0gs +022)
Ozz — V(U’MJ + Uyy)
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EXAMPLE: Block in a frictionless channel
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What are all stresses and strains?
No shears due to frictionless

Boundary Conditions:

€re = 0 Opy = 7
eyy = Given oy, =7
€ = 7 0., =0
1
€ = 5 [am —v(oyy + 022)}
So:
1
0= 5 [Um - Vayy]
1
= [ayy —v(0ge + azz)}
So:
1
€yy = 5 |:O'yy - Vam]
1
€2z = = |:0zz - V(gmw + Ui/y):|
E <
So:
1
€= % {V(am + ayy)}
Solve:
Opz = VOyy
Plug in:
1
Cyy = {Uyy - V(V‘Tyy)}
E
1
= T {Uw - Vzayu}
E g g
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Plug in:

Plug in:

NN
=~ araam)

EZZ:E[‘”(”””W)‘ 1=2) " (1=)

Q: What is change in volume?

Ogxx = Oyy = Ozz = —P

Initial Volume:

Vi = dxdydz

Final Volume:
(1 + €zz)da(1 + €yy)dy(l + €..)dz
AV =V -V,

AV = (14 €)1+ €)1+ €:.)Vi = V;

For small strains:



So:

(1 + (S + eyy + ezz)‘/i - V;

1
€xx — E |:0-wa; - V(Oyy + Uzz)
= % [—p —v(-p— p)}
—1(1 — 2v
€xx = ( E )p
—1(1 — 21/)
Cyy = B p
—1(1 — 21/)
€22 E p
3(1 - 21/) —3(1 — 21/)
AV {1 I3 p} Vi—=Vi I3 D
AV =3(1-2v)
vi B 7

AV/V;  3(1-2v)
k is the bulk modulus.

Note: If v = 0.5, % = 0 (Incompressible) and k — oo



