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Misspecified Linear Models

Arguably, the strongest assumption that we made in Chapter 2 is that the
regression function f(x) is of the form f(x) = x⊤θ∗. What if this assumption
is violated? In reality, we do not really believe in the linear model and we hope
that good statistical methods should be robust to deviations from this model.
This is the problem of model misspecified linear models.

Throughout this chapter, we assume the following model:

Yi = f(Xi) + εi, i = 1, . . . , n , (3.1)

where ε = (ε1, . . . , εn)
⊤ is sub-Gaussian with variance proxy σ2. HereXi ∈ IRd.

When dealing with fixed design, it will be convenient to consider the vector
g ∈ IRn defined for any function g : IRd → IR by g = (g(X1), . . . , g(Xn))

⊤. In
ˆthis case, we can write for any estimator f ∈ IRn of f ,

1
MSE ˆ ˆ(f) =

n
|f − f |22 .

Even though the model may not be linear, we are interested in studying the
statistical properties of various linear estimators introduced in the previous

ˆ ˆ ˜ ˆ ˆchapters: θls, θlsK , θ
ls
X , θ

bic, θL. Clearly, even with an infinite number of obser-
vations, we have no chance of finding a consistent estimator of f if we don’t
know the correct model. Nevertheless, as we will see in this chapter something
can still be said about these estimators using oracle inequalities.
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3.1 ORACLE INEQUALITIES

Oracle inequalities

As mentioned in the introduction, an oracle is a quantity that cannot be con-
structed without the knowledge of the quantity of interest, here: the regression
function. Unlike the regression function itself, an oracle is constrained to take
a specific form. For all matter of purposes, an oracle can be viewed as an
estimator (in a given family) that can be constructed with an infinite amount
of data. This is exactly what we should aim for in misspecified models.

ˆWhen employing the least squares estimator θls, we constrain ourselves to
estimating functions that are of the form x 7→ x⊤θ, even though f itself may

ˆnot be of this form. Therefore, the oracle f is the linear function that is the
closest to f .

Rather than trying to approximate f by a linear function f(x) ≈ θ⊤x, we
make the model a bit more general and consider a dictionaryH = {ϕ1, . . . , ϕM}
of functions where ϕj : IRd → IR. In the case, we can actually remove the
assumption that X ∈ IRd. Indeed, the goal is now to estimate f using a linear
combination of the functions in the dictionary:

M

f ≈ ϕθ :=
∑

θjϕj .
j=1

Remark 3.1. If M = d and ϕ (
j(X) = X j) returns the jth coordinate of

X ∈ IRd then the goal is to approximate f(x) by θ⊤x. Nevertheless, the use of
a dictionary allows for a much more general framework.

Note that the use of a dictionary does not affect the methods that we have
been using so far, namely penalized/constrained least squares. We use the
same notation as before and define

1. The least squares estimator:

n

θ̂ls
1∈ 2

argmin Yi ϕθ(Xi) (3.2)
θ I n∈RM

∑

i=1

(
−

)

2. The least squares estimator constrained to K ⊂ IRM :

1 ∑n
θ̂lsK ∈ 2

argmin
(
Yi (

∈K n
i=

− ϕθ Xi)
θ 1

)

3. The BIC estimator:

{ n
bic 1
θ̂ ∈ argmin i

θ IRM n

∑

i=1

(
Y − 2

ϕθ(Xi)
∈

)
+ τ2|θ|0

}
(3.3)
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4. The Lasso estimator:

{ n
1

θ̂L ∈ 2
argmin

∑
Yi ϕθ(Xi) + 2τ θ 1 (3.4)

θ IRM n∈ i=1

(
−

)
| |

}

Definition 3.2. Let R(·) be a risk function and let H = {ϕ1, . . . , ϕM} be a
dictionary of functions from IRd to IR. Let K be a subset of IRM . The oracle

¯on K with respect to R is defined by ϕθ̄, where θ ∈ K is such that

R(ϕθ̄) ≤ R(ϕθ) , ∀ θ ∈ K .

ˆMoreover, RK = R(ϕθ̄) is called oracle risk on K. An estimator f is said
to satisfy an oracle inequality (over K) with remainder term φ in expectation
(resp. with high probability) if there exists a constant C ≥ 1 such that

ˆIER(f) ≤ C inf R(ϕθ) + φn,M (K) ,
θ∈K

or
IP
{

ˆR(f) ≤ C inf R(ϕθ) + φn,M,δ(K) 1 δ , δ > 0
θ∈K

≥ − ∀

respectively. If C = 1, the oracle inequality is

}

sometimes called exact.

Our goal will be to mimic oracles. The finite sample performance of an
estimator at this task is captured by an oracle inequality.

Oracle inequality for the least squares estimator

While our ultimate goal is to prove sparse oracle inequalities for the BIC and
Lasso estimator in the case of misspecified model, the difficulty of the exten-
sion to this case for linear models, is essentially already captured for the least
squares estimator. In this simple case, can even obtain an exact oracle inequal-
ity.

Theorem 3.3. Assume the general regression model (3.1) with ε ∼ subGn(σ
2).

ˆThen, the least squares estimator θls satisfies for some numerical constant
C > 0,

σ2M
MSE(ϕ l̂s) ≤ inf MSE(ϕθ) + C log(1/δ)θ

θ∈IRM n

with probability at least 1− δ.

Proof. Note that by definition

|Y − ϕθ̂ls |22 ≤ |Y − ϕθ̄|22
where ϕθ̄ denotes the orthogonal projection of f onto the linear spam of
ϕ1, . . . , ϕn. Since Y = f + ε, we get

|f − ϕ l̂s |2 ≤ |f − ϕ 2
¯2 θ|2 + 2ε⊤(ϕˆ ¯θ θls − ϕθ)
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Moreover, by Pythagoras’s theorem, we have

|f − ϕ l̂s |22 − |f − ϕ¯|2θ 2 = |ϕˆ − ϕ 2
¯θ θls θ|2 .

It yields
|ϕ 2
θ̂ls − ϕθ̄|2 ≤ 2ε⊤(ϕθ̂ls − ϕθ̄) .

Using the same steps as the ones following equation (2.5) for the well specified
case, we get

σ2

|ϕ l̂s − ϕθ̄|2
M

2 . log(1/δ)θ n

with probability 1− δ. The result of the lemma follows.

Sparse oracle inequality for the BIC estimator

The techniques that we have developed for the linear model above also allows
to derive oracle inequalities.

Theorem 3.4. Assume the general regression model (3.1) with ε ∼ subGn(σ
2).

ˆThen, the BIC estimator θbic with regularization parameter

16σ2

τ2 = log(6eM) , α ∈ (0, 1) (3.5)
αn

satisfies for some numerical constant C > 0,

{1 + α Cσ2

MSE(ϕˆ ) ≤ inf MSE(ϕθ)+ θ log(eMθbic 0 )
θ∈IRM 1− α α(1

|− α)n
|

Cσ2

}

+ log(1/δ)
α(1− α)n

with probability at least 1− δ.

Proof. Recall the the proof of Theorem 2.14 for the BIC estimator begins as
follows:

1 |Y − ϕ 2 + 2 ˆτ θbic
1

τ2ˆ Y ϕ 2
0 θ + θ 0 .

n θbic |2 | | ≤
n
| − |2 | |

This is true for any θ ∈ IRM . It implies

|f − ˆϕ 2 2 bic 2 2
b̂ic |2 + nτ |θ |0 ≤ |f − ϕθ|2 + 2ε⊤(ϕ b̂ic − ϕθ) + nτ |θ|0 .θ θ

ˆNote that if θbic = θ, the result is trivial. Otherwise,

ϕ
2ε⊤

ˆ
(ϕ θbic ϕθ
θ̂bic ϕ = 2ε⊤

( −− θ)
ϕ b̂ ϕθ 2θ ic

)
|ϕ| b̂i − ϕ |− | θ 2θ c

2 [
ε⊤

( ϕ 2

≤ θ̂bic − ϕθ α
+ ϕ 2

ˆ ϕ ,
α | θ

ϕ θbic 2
θ̂bic − ϕθ|2

)]
2
| − |
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where we use Young’s inequality 2ab ≤ 2 a2 + αb2 valif for a, b ≥ 0, α > 0.α 2
Next, since

α |ϕˆ
2 θbic − ϕθ|2 ≤ α|ϕ 2 2

2 θ̂bic − f |2 + α|ϕθ − f |2 ,

we get for α < 1,

(1− α)|ϕˆ f 2
bic − |2 ≤ (1 + α)|ϕθθ − f |22 + nτ2|θ|0

2
+

[
ε⊤

α
U 2

b
ˆ( − 2

ϕ ϕθ ic θ) − nτ |θbicˆ |0
≤ (1 + α)|ϕ 2

θ − f |22 + 2nτ

]

|θ|0
2 [ ⊤U

]2
+ ε (ϕθ̂bic )
α −θ − n 2 ˆτ |θbic − θ|0

We conclude as in the proof of Theorem 2.14.

A similar oracle can be obtained in expectation (exercise).
The interpretation of this theorem is enlightening. It implies that the

BIC estimator will mimic the best tradeoff between the approximation error
MSE(ϕθ) and the complexity of θ as measured by its sparsity. In particu-
lar this result, sometimes called sparse oracle inequality implies the following

¯oracle inequality. Define the oracle θ to be such that

MSE(ϕθ̄) = min MSE(ϕθ)
θ∈IRM

then, with probability at least 1− δ,

1 + α Cσ2

MSE(ϕ b̂ic) ≤ MSE ¯ ¯(ϕθ) + θθ 1 α α(1 α)n

[
| | g(− 0 lo eM) + log(1/δ)−

]}

If the linear model happens to be correct, then, simply, MSE(ϕθ̄) = 0.

Sparse oracle inequality for the Lasso

To prove an oracle inequality for the Lasso, we need incoherence on the design.
Here the design matrix is given by the n×M matrix Φ with elements Φi,j =
ϕj(Xi).

Theorem 3.5. Assume the general regression model (3.1) with ε ∼ subGn(σ
2).

Moreover, assume that there exists an integer k such that the matrix Φ satisfies
ˆassumption INC(k) holds. Then, the Lasso estimator θL with regularization

parameter given by

√
2 log(2M)

√
2 log(1/δ)

2τ = 8σ + 8σ (3.6)
n n
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satisfies for some numerical constant C,

1 + α Cσ2

MSE(ϕˆL) ≤ inf
{

MSE(ϕθ) + θ 0 log(eM)θ
θ IRM 1 α α(1 α)n

| |
∈

|θ|0≤k
− −

}

Cσ2

+ log(1/δ)
α(1 − α)n

with probability at least 1− δ.

ˆProof. From the definition of θL, it holds for any θ ∈ IRM ,

1 |Y − ϕˆL |2
1

2 ≤
n
|Y − ϕθ|22 + 2τ

n θ |θ| |ˆ1 − 2τ θL|1 .

ˆAdding τ |θL − θ|1 on each side and multiplying by n, we get

|ϕˆL−f |2 2 ˆ ˆ ˆ
2−|ϕθ−f |2+nτ |θL−θ|1 ≤ 2ε⊤(ϕˆL−ϕθ)+nτθ |θL−θ|1+2nτ |θ|1−2nτθ |θL|1 .

(3.7)
Next, note that INC(k) for any k ≥ 1 implies that |ϕj |2 ≤ 2

√
n for all j =

1, . . . ,M . Applying Hölder’s inequality using the same steps as in the proof of
Theorem 2.15, we get that with probability 1− δ, it holds

nτ
2ε⊤ ˆ(ϕˆL − ϕθ) θθ ≤

2
| L − θ|1

Therefore, taking S = supp(θ) to be the support of θ, we get that the right-
hand side of (3.7) is bounded by

≤ |ˆ2nτ θL − θ|1 | | − |ˆ+ 2nτ θ 1 2nτ θL|1
= 2nτ |θ̂SL − θ|1 + 2nτ |θ|1 − |ˆ2nτ θS

L|1
≤ 4nτ |θ̂SL − θ|1 (3.8)

with probability 1− δ.
It implies that either MSE(ϕθ̂L) ≤ MSE(ϕθ) or that

|θ̂SLc − ˆθSc |1 ≤ 3|θSL − θS |1 .

ˆso that θ = θL − θ satisfies the cone condition (2.17). Using now the Cauchy-
Schwarz inequality and Lemma 2.17 respectively, assume that |θ|0 ≤ k, we
get

4nτ |θ̂SL − θ|1 ≤ 4nτ
√

|S||θ̂SL − θ|2 ≤ 4τ 2n|θ|0|ϕˆL − ϕθθ |2 .
Using now the inequality 2ab ≤ 2 a2 + αb2, we geα 2

√

t

16τ2n θ α
4nτ | L̂ 0

θS − θ| 2
1

| |≤ +
α 2

|ϕθ̂L − ϕθ|2
16τ2n|θ|≤ 0

+ α
α

|ϕθ̂L − f |22 + α|ϕθ − f |22
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Combining this result with (3.7) and (3.8), we find

16τ2 θ
(1

|− α)MSE(ϕθ̂L)
|≤ 0

(1 + α)MSE(ϕθ) + .
α

To conclude the proof of the bound with high probability, it only remains to
divide by 1−α on both sides of the above inequality. The bound in expectation
follows using the same argument as in the proof of Corollary 2.9.

Maurey’s argument

From the above section, it seems that the Lasso estimator is strictly better
than the BIC estimator as long as incoherence holds. Indeed, if there is no
sparse θ such that MSE(ϕθ) is small, Theorem 3.4 is useless. In reality, no
one really believes in the existence of sparse vectors but rater of approximately
sparse vectors. Zipf’s law would instead favor the existence of vectors θ with
absolute coefficients that decay polynomially when ordered from largest to
smallest in absolute value. This is the case for example if θ has a small ℓ1
norm but is not sparse. For such θ, the Lasso estimator still enjoys slow rates
as in Theorem 2.15, which can be easily extended to the misspecified case (see
Problem 3.2). Fortunately, such vectors can be well approximated by sparse
vectors in the following sense: for any vector θ ∈ IRM such that |θ|1 ≤ 1, there
exists a vector θ′ that is sparse and for which MSE(ϕθ′) is not much larger
than MSE(ϕθ). The following theorem quantifies exactly the tradeoff between
sparsity and MSE. It is often attributed to B. Maurey and was published by
Pisier [Pis81]. This is why it is referred to as Maurey’s argument.

Theorem 3.6. Let {ϕ1, . . . , ϕM} be a dictionary normalized in such a way
that

max ϕj 2 D
√
n .

1≤j≤M
| | ≤

Then for any integer k such that 1 ≤ k ≤M and any positive R, we have

D2R2

min MSE(ϕθ) ≤ min MSE(ϕθ) + .
θ I θ k∈RM IRM

|θ
∈

|0≤2k |θ|1≤R

Proof. Define
θ̄ ∈ argmin |ϕ − f |2θ 2

θ∈IRM

|θ|1≤R

¯ ¯ ¯and assume without loss of generality that |θ1| ≥ |θ2| ≥ . . . θ
¯

≥ | M |.
Now decompose θ = θ(1)+θ(2), where supp(θ(1)) ⊂ {1 . . . , k} and supp(θ(2)) ⊂

{k + 1, . . . ,M}. In particular it holds

ϕθ̄ = ϕθ(1) + ϕθ(2) .
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Moreover, observe that

M

|θ(2)| ¯
1 =

∑
|θj | ≤ R

j=k+1

Let now U ∈ IRn be a random vector with values in {0,±Rϕ1, . . . ,±RϕM}
defined by

(2)
(2) θj

IP(U = Rsign(θj )ϕj) =
| |

, j = k + 1, . . . ,M
R

θ(2) 1
IP(U = 0) = 1

| |− .
R

Note that IE[U ] = ϕθ(2) and U 2 RD
√| | ≤ n. Let now U1, . . . , Uk be k indepen-

dent copies of U define
k

1
Ū =

∑
Ui .

k
i=1

¯ ˜Note that U = ϕ M ˜ ˜
θ̃ for some θ ∈ IR such that |θ|0 ≤ k. Therefore, |θ(1)+θ|0 ≤

2k and

IE|f − ¯ϕ − U |2 = IE|f − ϕ − ϕ 2
θ(1) 2 θ(1) θ(2) + (

¯ϕθ 2) − U |2
= IE|f − ϕ 2

θ(1) − ϕθ(2) |2 + |ϕ 2
θ(2)

¯

2

− U |2
2 IE U IE[U ]

= |f − ϕθ̄|2 +
| − |2

k
(RD

√
n)2≤ |f − ϕθ̄|22 + k

To conclude the proof, note that

IE|f − 2
1

¯ϕθ( ) − U |2 = IE|f − ϕ 2 2
θ(1) ˜+θ|2 ≥ min |f − ϕθ 2

θ∈IRM
|

|θ|0≤2k

and to divide by n.

Maurey’s argument implies the following corollary.

Corollary 3.7. Assume that the assumptions of Theorem 3.4 hold and that
the dictionary {ϕ1, . . . , ϕM} is normalized in such a way that

max ϕj
√

1≤j≤M
| |2 ≤ n .

Then there exists a constant C > 0 such that the BIC estimator satisfies

σ2 θ 0 log(eM) log(eM)
MSE(ϕˆ ) inf 2MSE(ϕθ) + C σ θ 1θbic

| |≤
θ∈IRM

{ [
n

∧ | |
√

n

σ2 log(1/δ)

]}

+ C
n

with probability at least 1− δ.
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Proof. Choosing α = 1/3 in Theorem 3.4 yields

{ σ2 θ 2
0 log(eM) σ log(1/δ)

MSE(ϕ b̂ic) ≤ 2 inf MSE(ϕθ) + C
| |

+θ
θ∈I n

}
C

RM n

For any θ′ ∈ IRM , it follows from Maurey’s argument that there exist θ ∈ IRM

such that |θ|0 ≤ 2|θ′|0 and

2|θ′|2
MSE(ϕθ) ≤ 1MSE(ϕθ′) + |θ|0

It implies that

σ2|θ|0 log(eM) 2|θ′|2 2
1 σ |θ|0 log(eM)

MSE(ϕθ) + C MSE(ϕθ′) + + C
n

≤ |θ|0 n

Taking infimum on both sides, we get

σ2

in
|θ 0 (eM)

f MSE(ϕθ) + C
| log

θ∈IRM

{
n

}

{ θ′ 2 σ2k log(eM)≤ inf MSE(ϕθ )
(

1
′ + Cmin

θ′

|
+ C

∈IRM

|
k k n

)}
.

To control the minimum over k, we need to consider three cases for the quantity

|θ′¯ |1
k

√
logM

=
σ n

1. If 1 ≤ k̄ ≤M , then we get

min
( |θ′|2 σ2

1 k log(eM)) log(eM)
+ C ≤ Cσ θ′ 1

k k n
| |

√

n

¯2. If k ≤ 1, then
σ2 log(eM)|θ′|21 ≤ C ,

n

which yields

|θ′|2 2
1 σ k log(eM) σ2 log(eM)

min + C C
k

(
k n

)
≤

n

¯3. If k ≥M , then
σ2M log(eM)

n
≤ C

|θ′|21 .
M

θTherefore, on the one hand, if M ≥ √ | |1 , we get
σ log(eM)/n

( |θ′|2 σ2
1 k log(eM)) |θ′|21

√
log(eM)

min + C ≤ C Cσ θ′ 1 .
k k n M

≤ | |
n
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On the other hand, if M ≤ √ |θ|1 , then for any Θ ∈ IRM , we have
σ log(eM)/n

σ2|θ| log(eM) σ2
0 M log(eM) log(eM)

n
≤

n
≤ Cσ|θ′|1

√
.

n

Note that this last result holds for any estimator that satisfies an oracle
inequality with respect to the ℓ0 norm such as the result of Theorem 3.4. In
particular, this estimator need not be the BIC estimator. An example is the
Exponential Screening estimator of [RT11].

Maurey’s argument allows us to enjoy the best of both the ℓ0 and the
ℓ1 world. The rate adapts to the sparsity of the problem and can be even
generalized to ℓq-sparsity (see Problem 3.3). However, it is clear from the proof
that this argument is limited to squared ℓ2 norms such as the one appearing
in MSE and extension to other risk measures is non trivial. Some work has
been done for non Hilbert spaces [Pis81, DDGS97] using more sophisticated
arguments.

3.2 NONPARAMETRIC REGRESSION

So far, the oracle inequalities that we have derived do not deal with the
approximation error MSE(ϕθ). We kept it arbitrary and simply hoped that
it was small. Note also that in the case of linear models, we simply assumed
that the approximation error was zero. As we will see in this section, this
error can be quantified under natural smoothness conditions if the dictionary
of functions H = {ϕ1, . . . , ϕM} is chosen appropriately. In what follows, we
assume for simplicity that d = 1 so that f : IR → IR and ϕj : IR → IR.

Fourier decomposition

Historically, nonparametric estimation was developed before high-dimensional
statistics and most results hold for the case where the dictionaryH = {ϕ1, . . . , ϕM}
forms an orthonormal system of L2([0, 1]):

∫ 1 1

ϕ2
j(x)dx = 1 , j

0

∫
ϕj(x)ϕk(x)dx = 0, = k .

0

∀

We will also deal with the case where M = ∞.
When H is an orthonormal system, the coefficients θj

∗ ∈ IR defined by

1

θj
∗ =

∫
f(x)ϕj(x)dx ,

0

are called Fourier coefficients of f .

6
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Assume now that the regression function f admits the following decompo-
sition ∞

f =
∑

θj
∗ϕj .

j=1

There exists many choices for the orthonormal system and we give only two
as examples.

Example 3.8. Trigonometric basis. This is an orthonormal basis of L2([0, 1]).
It is defined by

ϕ1 ≡ 1

ϕ2k(x) =
√
2 cos(2πkx) ,

ϕ2k+1(x) =
√
2 sin(2πkx) ,

for k = 1, 2, . . . and x ∈ [0, 1]. The fact that it is indeed an orthonormal system
can be easily check using trigonometric identities.

The next example has received a lot of attention in the signal (sound, image,
. . . ) processing community.

Example 3.9. Wavelets. Let ψ : IR → IR be a sufficiently smooth and
compactly supported function, called “mother wavelet”. Define the system of
functions

ψ (x) = 2j/2 j
jk ψ(2 x− k) , j, k ∈ Z .

It can be shown that for a suitable ψ, the dictionary {ψj,k, j, k ∈ Z} forms an
orthonormal system of L2([0, 1]) and sometimes a basis. In the latter case, for
any function g ∈ L2([0, 1]), it holds

g
∑∞ ∞ 1

= θjkψjk , θjk = g(x)ψjk(x)dx .
∞ 0j=− k=

∑

−∞

∫

The coefficients θjk are called wavelet coefficients of g.
The simplest example is given by the Haar system obtained by taking ψ to

be the following piecewise constant function (see Figure 3.1). We will not give
more details about wavelets here but refer simply point the interested reader
to [Mal09].

ψ(x) =


 1 0 ≤ x < 1/2

 −1 1/2 ≤ x ≤ 1
0 otherwise

Sobolev classes and ellipsoids

We begin by describing a class of smooth functions where smoothness is under-
stood in terms of its number of derivatives. Recall that f (k) denotes the k-th
derivative of f .



3.2. Nonparametric regression 71

−
1

0
1

0.0 0.5 1.0

ψ
(x

)

x

Figure 3.1. The Haar mother wavelet

Definition 3.10. Fix parameters β ∈ {1, 2, . . .} and L > 0. The Sobolev class
of functions W (β, L) is defined by

W (β, L) =
{
f : [0, 1] → IR : f ∈ L ([0, 1]) , f (β

2
−1) is absolutely continuous and

∫ 1

[f (β)]2 ≤ L2 , f (j)(0) = f (j)(1), j = 0, . . . , β 1
0

−
}

Any function f ∈ W (β, L) can represented1 as its Fourier expansion along
the trigonometric basis:

∞
f(x) = θ1

∗ϕ1(x) +
∑(

θ2
∗
kϕ2k(x) + θ2

∗
k+1ϕ2k+1(x) , x [0, 1] ,

k=1

)
∀ ∈

where θ∗ = {θj∗}j 1 is in the space of squared summable sequence ℓ2(IN) defined≥
by

∞
ℓ2(IN) =

{
θ :

∑
θ2j <

j=1

∞
}
.

For any β > 0, define the coefficients
{

jβ for j even
aj = (3.9)

(j − 1)β for j odd

Thanks to these coefficients, we can define the Sobolev class of functions in
terms of Fourier coefficients.

1In the sense that
∫

1 k

lim |f(t) −
∑

θjϕj(t)|
2dt = 0

k→∞ 0 j=1
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Theorem 3.11. Fix β ≥ 1 and L > 0 and let {ϕj}j 1 denote the trigonometric≥
basis of L2([0, 1]). Moreover, let {aj}j be defined as in (3.9). A function≥1

f ∈W (β, L) can be represented as

f =
∑∞

θj
∗ϕj ,

j=1

where the sequence {θj∗}j 1 belongs to Sobolev ellipsoid of ℓ2(IN) defined by≥

Θ(β,Q) =
{ ∑∞
θ ∈ ℓ2(IN) : a2jθ

2
j

j=1

≤ Q
}

for Q = L2/π2β.

Proof. Let us first recall the definition of the Fourier coefficients {sk(j) k 1 of
the jth derivative f (j)

} ≥
of f for j = 1, . . . , β:

1

s1(j) =

∫
f (j)(t)dt = f (j−1)(1)− f (j−1)(0) = 0 ,

0
1

s (
2k(j) =

√
2

∫
f j)(t) cos(2πkt)dt ,

0

s 2

∫ 1

(j) =
√

f (j)
2k+1 (t) sin(2πkt)dt ,

0

The Fourier coefficients of f are given by θk = sk(0).
Using integration by parts, we find that

√ ∣∣ 11

s ( β 1)
2k β) = 2f ( − (t) cos(2πkt)∣ + (2πk)

√
2 f (β−1)(t) sin(2πkt)dt

0

∫

0

√ 1

= 2[f (β−1)(1)− f (β−1)(0)] + (2πk)
√
2

= (2πk)s

∫
f (β−1)(t) sin(2πkt)dt

0

2k+1(β − 1) .

Moreover,

11

s2k+1(β) =
√
2f (β−1)(t) sin(2πkt)

∣∣∣
√

0
− (2πk) 2

∫
f (β−1)(t) cos(2πkt)dt

0

= −(2πk)s2k(β − 1) .

In particular, it yields

s 2
2 ( 2
k β) + s2k+1(β) = (2πk)2 s2k(β − 1)2 + s2k+1(β − 1)2

By induction, we find that for any k ≥

[

1,

]

s (β)2 + s (β)2 2
k = 2

2 (2πk)2β2k+1

(
θ2k + θ2k+1

)
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Next, it follows for the definition (3.9) of aj that

∑∞ ∞ ∞
(2πk)2β

(
θ2 + θ2

)
= π2β 2

2k 2k+1

∑
a 2 2β
2kθ2k + π

k=1 k=1

∞
k

∑
a2 2
2k+1θ2k+1

=1

= π2β
∑

a2jθ
2
j .

j=1

Together with the Parseval identity, it yields

∫ 1 (
f (β)(t)

)2 ∞ ∞
dt =

∑
s (β)2 + s (β)2 = π2β a2θ22k 2k+1 j j .

0 k=1

∑

j=1

To conclude, observe that since f ∈W (β, L), we have

∫ 1

0

2 2β

( 2
f (β)(t)

)
dt ≤ L2 ,

so that θ ∈ Θ(β, L /π ) .

It can actually be shown that the reciprocal is true, that is any function
with Fourier coefficients in Θ(β,Q) belongs to if W (β, L) but we will not be
needing this.

In what follows, we will define smooth functions as functions with Fourier
coefficients (with respect to the trigonometric basis) in a Sobolev ellipsoid. By
extension, we write f ∈ Θ(β,Q) in this case and consider any real value for β.

Proposition 3.12. The Sobolev ellipsoids enjoy the following properties

(i) For any Q > 0,

0 < β′ < β ⇒ Θ(β,Q) ⊂ Θ(β′, Q)

(ii) For any Q > 0,
1

β > ⇒ f is continuous
2

The proof is left as an exercise (Problem 3.5)
It turns out that the first functions in the trigonometric basis are orthonor-

mal with respect to the inner product of L2 but also to the inner predictor
associated to fixed design 〈f, g〉 := 1 f(Xi)g(Xi) when the design is chosen ton
be regular, i.e., Xi = (i− 1)/n, i = 1, . . . , n.

Lemma 3.13. Assume that {X1, . . . , Xn} is the regular design, i.e., Xi =
(i − 1)/n. Then, for any M ≤ n − 1, the design matrix Φ = {ϕj(Xi)} 1≤i

1
≤n

≤j≤M
satisfies the ORT condition.
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Proof. Note first that for any j, j′ ∈ {1, . . . , n − 1}, j = j′ the inner product
ϕ⊤
j ϕj′ is of the form

n−1

ϕ⊤
j ϕj′ = 2

∑
uj(2πkjs/n)vj′(2πkj′s/n)

s=0

where kj = ⌊j/2⌋ is the integer part of j/2 for any x ∈ IR, uj(x), vj′ (x)
ix x

Re Im
i

∈
{ (e ), (e )}.

Next, observe that if kj = kj′ , we have

n∑−1
i

n 1
2πk s i2πk ′ s ∑− i2π(k −k

− j ′ )sj j j

e n e n = e n = 0 .
s=0 s=0

Moreover, if we define the vectors a, b, a′, b′ ∈ IRn with coordinates such that
i2πk s i2πk ′ sj j

e n = as + ibs and e n = a′s + ib′s, we get

n∑−1
i2πk s i2πk

− ′ sj j

e n e n = (a+ ib)⊤(a′ − ib′) = a⊤a′ + b⊤b′ + i ⊤ a
0

[
b a′

=

− ⊤b′

s

]

and consequently that

1
ϕ⊤
j ϕj′ = a⊤a′ + b⊤b′ + i

[
b⊤a′ a

2
− ⊤b′

with |a|2|b|2 = |a′|2|b′|2 = 0, i.e., either a = 0 or b = 0 a

]

nd either a′ = 0 or
b′ = 0. Therefore, in the case where kj = kj′ , we have

a⊤a′ = −b⊤b′ = 0, b⊤a′ = a⊤b′ = 0

which implies ϕ⊤
j ϕj′ = 0. To conclude the proof, it remains to deal with the

case where kj = kj′ . This can happen in two cases: |j′ − j| = 1 or j′ = j. In
the first case, we have that {u (x), v (x)} = {Re(eix), Im(eixj j′ )}, i.e., one is a
sin(·) and the other is a cos(·). Therefore,

1
ϕ⊤
j ϕj′ = a⊤a′ + b⊤b′ + i b⊤a′

2
− a⊤b′ = 0

The final case is j = j′ for which, on the on

[

e hand,

]

n∑−1
i2πk s i

n
2πk s i4πj j

−1

e n e n =
∑ k sj

e n = 0
s=0 s=0

and on the other hand

n∑−1
i2πk s i2πk sj j

e n e n = |a+ ib|22 = |a|22
0

− b|22
s=

|

6

6

6
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so that |a|2 = |b|2. Moreover, by
{
definition,

2 2|a|22 if j is even|ϕj |2 =
2|b|22 if j is odd

so that
|a|2 + |b| n2 −1

i2πk s

|ϕj | 22 j2
2 = 2 2 = e n = n

2
s=0

Therefore, the design matrix Φ is such tha

∑

t

∣∣ ∣∣

Φ⊤Φ = nIM .

Integrated squared error

As mentioned in the introduction of this chapter, the smoothness assumption
allows us to control the approximation error. Before going into the details, let
us gain some insight. Note first that if θ ∈ Θ(β,Q), then a2 2

jθj → 0 as j → ∞
so that |θj | = o(j−β). Therefore, the θjs decay polynomially to zero and it
makes sense to approximate f by its truncated Fourier series

∑M
θj
∗ϕj =: ϕMθ∗

j=1

for any fixed M . This truncation leads to a systematic error that vanishes as
M → ∞. We are interested in understanding the rate at which this happens.

The Sobolev assumption to control precisely this error as a function of the
tunable parameter M and the smoothness β.

Lemma 3.14. For any integer M ≥ 1, and f ∈ Θ(β,Q), β > 1/2, it holds

‖ϕMθ∗ − f‖2 2
L2

=
j

∑

>M

|θ∗| ≤ QM−2β
j . (3.10)

and for M = n− 1, we have

2

|ϕn−1
θ∗ − f |22 ≤ 2n

(
θ

j

∑

≥n
| j∗|

)
. Qn2−2β . (3.11)

Proof. Note that for any θ ∈ Θ(β,Q), if β > 1/2, then

∑∞ ∞
|θj | =

∑ 1
aj θj

ajj=2 √j=2

| |

≤
√√√∑∞ ∞

a2jθ
2
j

∑ 1
by Cauchy-Schwarz

a2jj=2 j=2

≤

√√√√
∞

Q
∑ 1

<
j2β

j=1

∞
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Since {ϕj}j forms an orthonormal system in L2([0, 1]), we have

min ‖ϕ − f‖2 2
θ L2

= ‖ϕθ∗ − f‖L2
=

∑
|θ∗ 2
j

θ∈IRM

j>M

| .

When θ∗ ∈ Θ(β,Q), we have

∑
|2 1 Q|θj∗ =

∑
a2j θj

∗ 2 1| | Q .
a2 2β
j

≤
a2M+1 M

j>M j>M

≤

To prove the second part of the lemma, observe that

|ϕn−1
θ∗ − f |2 =

∣∑
θj
∗ϕj

≥

∣
2
√
2n θ∗

2 j ,
j n

≤
j

∑

≥n
| |

where in√the last inequality, we

∣

used the

∣

fact that for the trigonometric basis
|ϕj |2 ≤ 2n, j ≥ 1 regardless of the choice of the design X1, . . . , Xn. When
θ∗ ∈ Θ(β,Q), we have

∑ 1|θj∗| =
∑ 1

aj|θj∗| a2
a j θj

∗
j

j n j n

≤
√

j

∑

n

| |
√

1
2 . Qn 2 .

a2
−β

≥ ≥ ≥ jj

∑

≥n

Note the truncated Fourier series ϕθ∗ is an oracle: this is what we see when
we view f through the lens of functions with only low frequency harmonics.

To estimate ϕθ∗ , consider the estimator ϕ l̂s whereθ

n

θ̂ls ∈ 2
argmin

∑(
Yi

M

− ϕθ(Xi) .
θ∈IR i=1

)

Which should be such that ϕ l̂s is close to ϕθ∗ . For this estimator, we haveθ
proved (Theorem 3.3) an oracle inequality for the MSE that is of the form

|ϕM − f |2l̂s 2 ≤ inf |ϕM 2
θ − f |2 + Cσ M log(1/δ) , C > 0 .

θ θ∈IRM

It yields

|ϕM ϕM 2 2( M ϕMˆ ∗ ϕˆ ∗)⊤(f ϕM 2
∗) + Cσ M log(1/δ)

θls
− θ |2 ≤

θls
− θ − θ

= 2(ϕM M
ˆ − ϕθ∗ls

)⊤(
θ

∑
θ 2
j
∗ϕj) + Cσ M log(1/δ)

j>M

= 2(ϕM
θ̂ls

− ϕMθ∗)
⊤(

∑
θj
∗ϕj) + Cσ2M log(1/δ) ,

j≥n

where we used Lemma 3.13 in the last equality. Together with (3.11) and
Young’s inequality 2ab ≤ αa2 + b2/α, a, b ≥ 0 for any α > 0, we get

M M C
2(ϕ l̂s − ϕθ∗)

⊤(
∑

θ∗ M M 2 2 2β
jϕj) ≤ α|ϕˆ ∗

θ θls
ϕ 2

j

− θ ,
n

| + Qn −
α≥
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for some positive constant C when θ∗ ∈ Θ(β,Q). As a result,

M 1 σ2M|ϕ
θ̂ls

− ϕM 2
θ∗ |2 . Qn2−2β + log(1/δ) (3.12)

α(1 − α) 1− α

for any t ∈ (0, 1). Since, Lemma 3.13 implies, |ϕM 2
l̂
− ϕMθ∗s

|2 = n
2

‖ϕMˆθ θls
M

−
ϕθ∗‖L ([0,1]), we have proved the following theorem.

2

Theorem 3.15. Fix β ≥ (1 +
√
5)/4 ≃ 0.81, Q > 0, δ > 0 and assume the

general regression model (3.1) with f ∈ Θ(β,Q) and ε ∼ subG (σ2), σ2
n 1.

1

≤
Moreover, let M = ⌈n 2β+1 and n be large enough so that M n 1. Then the

ˆ
⌉ ≤ −

least squares estimator θls defined in (3.2) with {ϕj}Mj=1 being the trigonometric
basis, satisfies with probability 1− δ, for n large enough,

g(1‖ϕ − 2β lo /δ)
l̂s f 2 .θ ‖ n− 2β+1 + σ2

L2([0,1])
.

n

where the constant factors may depend on β,Q and σ. Moreover

IE‖ 2β

ϕ − f‖2 . n− 2β+1
θ̂ls L2([0,1])

.

Proof. Choosing α = 1/2 for example and absorbing Q in the constants, we
get from (3.12) and Lemma 3.13 that for M ≤ n− 1,

2 M + log(1/δ)‖ϕˆ − ϕ 1 2β
θ∗ls ‖L ([0,1]) .2

n − + σ2 .θ n

Using now Lemma 3.14 and σ2 ≤ 1, we get

M + σ2

‖ 2 2β 1 2β log(1/δ)
ϕ l̂s − fθ ‖L2([0,1])

.M− + n − + .
n

1

Taking M = ⌈n 2β+1 ⌉ ≤ n− 1 for n large enough yields

2β2 1 2β 2 log(1/δ)‖ϕ 2β+1
θ̂ls − f‖L2([0,1])

. n− + n − + σ .
n

To conclude the proof, simply note that for the prescribed β, we have n1−2β ≤
n− 2β

2β+1 . The bound in expectation can be obtained by integrating the tail
bound.

Adaptive estimation

1

The rate attained by the projection estimator ϕ l̂s withM = ⌈n 2β+1
θ ⌉ is actually

optimal so, in this sense, it is a good estimator. Unfortunately, its implementa-
tion requires the knowledge of the smoothness parameter β which is typically
unknown, to determine the level M of truncation. The purpose of adaptive es-
timation is precisely to adapt to the unknown β, that is to build an estimator
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2β

that does not depend on β and yet, attains a rate of the order of Cn− 2β+1 (up
to a logarithmic lowdown). To that end, we will use the oracle inequalities for
the BIC and Lasso estimator defined in (3.3) and (3.4) respectively. In view of
Lemma 3.13, the design matrix Φ actually satisfies the assumption ORT when
we work with the trigonometric basis. This has two useful implications:

1. Both estimators are actually thresholding estimators and can therefore
be implemented efficiently

2. The condition INC(k) is automatically satisfied for any k ≥ 1.

These observations lead to the following corollary.

Corollary 3.16. Fix β ≥ (1 +
√
5)/4 ≃ 0.81, Q > 0, δ > 0 and n large enough

to ensure n − 1 ≥ ⌈ 1

n 2β+1 ⌉ assume the general regression model (3.1) with
f ∈ Θ(β,Q) and ε ∼ subGn(σ

2), σ2 ≤ 1. Let {ϕ n
j}j−1

=1 be the trigonometric

basis. Denote by ϕn 1 n 1
b̂

−
ic

(resp. ϕˆL
− ) the BIC (resp. Lasso) estimator defined

θ θ

in (3.3) (resp. (3.4)) over IRn−1 with regularization parameter given by (3.5)
ˆ ˆ(resp. (3.6)). Then ϕn−1, where θ ∈ {θbic ˆ

ˆ , θL} satisfies with probability 1
θ

− δ,

‖ 2β

ϕn−1 − f‖2 . n− 2β+1 + σ2 log(1/δ)
ˆ L2([0,1])

.
θ n

Moreover,
logn

2β
2β+1

IE‖ϕn−1 2 2
ˆ − f‖L2([0,1])

. σ .
θ n

where constant factors may depend on β and

(

Q.

)

ˆ ˆProof. For θ ∈ {θbic ˆ, θL}, adapting the proofs of Theorem 3.4 for the BIC
estimator and Theorem 3.5 for the Lasso estimator, for any θ ∈ IRn−1, with
probability 1− δ

ϕn
1 + α| ˆ

−1 f 2 2
2 ϕn−1

θ f |2 + (
α
| − R

θ
− | ≤

1
|θ|0) .−

where
Cσ2 Cσ2

R(|θ|0) := |θ0| log(en) + log(1/δ)
α(1− α) α(1− α)

It yields

2α|ϕn−1 − ϕn−1 2
ˆ θ |2θ

≤
1 α

|ϕn−1 − f |2 + 2(ϕn−1 − ϕn−1)⊤(ϕn−1 − f) +R(|θ| )
( − θ 2 ˆ θ θ 0θ

2α 1≤ + ϕn−1 f 2 + α ϕn−1 ϕn−1 2 +R( θ 0) ,
1 α

|− α θ − |2 | ˆ − θ |2θ
| |

where we used Young’s inequalit

)

y once again. Choose now α = 1/2 and θ = θM
∗ ,

where θM
∗ is equal to θ∗ on its first M coordinates and 0 otherwise so that

ϕn−1
θ∗ = ϕMθ∗ . It yields
M

|ϕn−1 −ϕn−1|2 . |ϕn 1 2 n 1 n 1 2 n 1 2
ˆ θ∗ 2 θ∗

− − f |2+R(M) . |ϕθ∗− −ϕθ∗
− |2+ |ϕθ∗− − f |2+R(M)

θ M M M
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Next, it follows from (3.11) that |ϕn−1
θ∗ − f |22 . Qn2−2β. Together with

Lemma 3.13, it yields

‖ϕn−1 − ϕn−1‖2 . ‖ϕn−1 n 1 2 1 2β R(M)
ˆ θ∗ L2([0,1]) θ∗ − ϕθ∗

− ‖L2([0,1])
+Qn − + .

θ M M n

Moreover, using (3.10), we find that

2

‖ϕn 1 2 M σ
. 2β

ˆ
− − f‖L2([0,1])

M− +Qn1−2β + log(en) + log(1/δ) .
θ n n

1

To conclude the proof, chooseM = ⌈(n/ logn) 2β+1 ⌉ and observe that the choice
of β ensures that n1−2β .M−2β . This yields the high probability bound. The
bound in expectation is obtained by integrating the tail.

While there is sometimes a (logarithmic) price to pay for adaptation, it
turns out that the extra logarithmic factor can be removed by a clever use of
blocks (see [Tsy09, Chapter 3]). The reason why we get this extra logarithmic
factor here is because we use a hammer that’s too big. Indeed, BIC and Lasso
allow for “holes” in the Fourier decomposition and we use a much weaker
version of their potential.
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3.3 PROBLEM SET

Problem 3.1. ˆShow that the least-squares estimator θls defined in (3.2) sat-
isfies the following exact oracle inequality:

IEMSE(ϕ 2M
θ̂ls) ≤ inf MSE(ϕθ) + Cσ

θ∈IRM n

for some constant M to be specified.

Problem 3.2. Assume that ε ∼ subGn(σ
2) and the vectors ϕj are normalized

in such a way that maxj |ϕj |2
√

ˆ
≤ n. Show that there exists a choice of τ

such that the Lasso estimator θL with regularization parameter 2τ satisfies the
following exact oracle inequality:

logM
MSE(ϕˆL) ≤ inf MSE(ϕθ) + Cσ

θ∈I
|θ|1θ

RM

√

n

with probability at least 1−M−c

{

for some positive constants

}

C, c.

Problem 3.3. Let {ϕ1, . . . , ϕM} be a dictionary normalized in such a way
that maxj |ϕj |2

√≤ n. Show that for any integer k such that 1 ≤ k ≤ M , we
have

1 1 2
k q̄ M q̄

min MSE(ϕθ) ≤ min MSE(ϕθ) + C 2
qD

θ∈IRM

−
,

θ∈IRM k
|θ|0≤2k |θ|wℓq≤1

( )

where |θ|wℓq denotes the weak ℓq norm and q̄ is such that 1 + 1 = 1.q q̄

Problem 3.4. Show that the trigonometric basis and the Haar system indeed
form an orthonormal system of L2([0, 1]).

Problem 3.5. If f ∈ Θ(β,Q) for β > 1/2 and Q > 0, then f is continuous.
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