
Chapter 3

Categories and functors,
without admitting it

In this chapter we begin to use our understanding of sets to build more interesting
mathematical devices, each of which organizes our understanding of a certain kind of
domain. For example, monoids organize our thoughts about agents acting on objects;
groups are monoids except restricted to only allow agents to act reversibly. We will
then study graphs, which are systems of nodes and arrows that can capture ideas like
information flow through a network or model connections between building blocks in a
material. We will discuss orders, which can be used to study taxonomies or hierarchies.
Finally we take a mathematical look at databases, which actually subsume everything
else in the chapter. Databases are connection patterns for structuring information.

We will see in Chapter 4 that everything we study in the present chapter is an example
of a category. So is Set, the category of sets studied in Chapter 2. One way to think of
a category is as a set of objects and a connection pattern between them; sets are objects
(ovals full of dots if you wish) connected by functions. But each set is itself a category:
the objects inside it are just disconnected! Just like a set has an interior view and an
exterior view, so will all the categories in this chapter. Each monoid is a category, but
there is also a category of monoids.

However, we will not really say the word “category” much if at all in this chapter.
It seems preferable to let the ideas rise on their own accord as interesting structures in
their own right before explaining that everything in site fits into a single framework.
That will be the pleasant reward to come in Chapter 4.

3.1 Monoids
A common way to interpret phenomena we see around us is to say that agents are acting
on objects. For example, in a computer drawing program, the user acts on the canvas
in certain prescribed ways. Choices of actions from an available list can be performed in
sequence to transform one image into another. As another example, one might investigate
the notion that time acts on the position of hands on a clock in a prescribed way. A
first rule for actions is this: the performance of a sequence of several actions is itself the
performance of an action—a more complex action, but an action nonetheless.

Mathematical objects called monoids and groups are tasked with encoding the agent’s

69

70 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

perspective in all this, i.e. what the agent can do, and what happens when different
actions are done in succession. A monoid can be construed as a set of actions, together
with a formula that encodes how a sequence of actions is itself considered an action. A
group is the same as a monoid, except that every action is required to be reversible. In
this section we concentrate on monoids; we will get to groups in Section 3.2.

3.1.1 Definition and examples
Definition 3.1.1.1 (Monoid). A monoid is a sequence pM, e, ‹q, where M is a set, e PM
is an element, and ‹ : M ˆM ÑM is a function, such that the following conditions hold
for all m,n, p PM :

• m ‹ e “ m,

• e ‹m “ m, and

• pm ‹ nq ‹ p “ m ‹ pn ‹ pq.

We refer to e as the identity element and to ‹ as the multiplication formula for the
monoid. 1 We call the first two rules identity laws and the third rule the associativity
law for monoids.

Remark 3.1.1.2. To be pedantic, the conditions from Definition 3.1.1.1 should be stated

• ‹pm, eq “ m,

• ‹pe,mq “ m, and

• ‹p‹pm,nq, pq “ ‹pm, p‹pn, pqq.

The way they are written in Definition 3.1.1.1 is called infix notation, and we often use
infix notation without mentioning it. That is, given a function ¨ : A ˆ B Ñ C, we may
write a ¨ b rather than ¨pa, bq.
Example 3.1.1.3 (Additive monoid of natural numbers). Let M “ N be the set of natural
numbers. Let e “ 0 and let ‹ : M ˆM Ñ M denote addition, so that ‹p4, 18q “ 22.
Then the equations m ‹ 0 “ m and 0 ‹m “ m hold, and pm ‹ nq ‹ p “ m ‹ pn ‹ pq. By
assigning e and ‹ in this way, we have “given N the structure of a monoid”.
Remark 3.1.1.4. Sometimes we are working with a monoid pM, e, ‹q, and the identity
e and multiplication ‹ are somehow clear from context. In this case we might refer to
the set M as though it were the whole monoid. For example, if we were discussing the
monoid from Example 3.1.1.3, we might refer to it as N. The danger comes because sets
may have multiple monoid structures, as we see below in Exercise 3.1.1.6.
Example 3.1.1.5 (Non-monoid). If M is a set, we might call a function f : M ˆM ÑM
an operation on M . For example, if M “ N is the set of natural numbers, we can consider
the operation f : NÑ N called exponentiation. For example fp2, 5q “ 2˚2˚2˚2˚2 “ 32
and fp7, 2q “ 49. This is indeed an operation, but it is not part of any monoid. For one
thing there is no possible unit. Trying the obvious choice of e “ 1, we see that a1 “ a
(good), but that 1a “ 1 (bad: we need it to be a). For another thing, this operation is
not associative because in general abc

‰ pabqc. For example, 212
“ 2 but p21q2 “ 4.

1Although the function ‹ : M ˆM Ñ M is called the multiplication formula, it may have nothing
to do with multiplication. It is nothing more than a formula for taking two inputs and returning an
output; calling it “multiplication” is suggestive of its origins, rather than prescriptive of its behavior.

3.1. MONOIDS 71

One might also attempt to consider an operation f : M ˆM ÑM that, upon closer
inspection, aren’t even operations. For example, if M “ Z then exponentiation is not
even an operation. Indeed, fp2,´1q “ 2´1 “ 1

2 , and this is not an integer. To have a
function f : M ˆM ÑM , we need that every element of the domain, in this case every
pair of integers, has an output under f . So there is no such function f .
Exercise 3.1.1.6. Let M “ N be the set of natural numbers. Taking e “ 1, come up with
a formula for ‹ that gives N the structure of a monoid. ♦

Exercise 3.1.1.7. Come up with an operation on the set M “ t1, 2, 3, 4u, i.e. a legitimate
function f : MˆM ÑM , such that f cannot be the multiplication formula for a monoid
on M . That is, either it is not associative, or no element of M can serve as a unit. ♦

Exercise 3.1.1.8. In both Example 3.1.1.3 and Exercise 3.1.1.6, the monoids pM, e, ‹q
satisfied an additional rule called commutativity, namely m‹n “ n‹m for every m,n PM .
There is a monoid pM, e, ‹q lurking in linear algebra textbooks that is not commutative;
if you have background in linear algebra try to answer this: what M, e, and ‹ might I
be referring to? ♦

Exercise 3.1.1.9. Recall the notion of commutativity for monoids from Exercise 3.1.1.8.

a.) What is the smallest set M that you can give the structure of a non-commutative
monoid?

b.) What is the smallest set M that you can give the structure of a monoid?

♦

Example 3.1.1.10 (Trivial monoid). There is a monoid with only one element, M “

pteu, e, ‹q where ‹ : teu ˆ teu Ñ teu is the unique function. We call this monoid the
trivial monoid, and sometimes denote it 1.
Example 3.1.1.11. Suppose that pM, e, ‹q is a monoid. Given elements m1,m2,m3,m4
there are five different ways to parenthesize the product m1 ‹ m2 ‹ m3 ‹ m4, and the
associativity law for monoids will show them all to be the same. We have

ppm1 ‹m2q ‹m3q ‹m4 “ pm1 ‹m2q ‹ pm3 ‹m4q

“ pm1 ‹ pm2 ‹m3qq ‹m4

“ m1 ‹ pm2 ‹ pm3 ‹m4qq

“ m1 ‹ ppm2 ‹m3q ‹m4q

In fact, the product of any list of monoid elements is the same, regardless of parenthe-
sization. Therefore, we can unambiguously write m1m2m3m4m5 rather than any given
parenthesization of it. This is known as the coherence theorem and can be found in
[Mac].

3.1.1.12 Free monoids and finitely presented monoids

Definition 3.1.1.13. Let X be a set. A list in X is a pair pn, fq where n P N is a natural
number (called the length of the list) and f : nÑ X is a function, where n “ t1, 2, . . . , nu.
We may denote such a list by

pn, fq “ rfp1q, fp2q, . . . , fpnqs.

The empty list is the unique list in which n “ 0; we may denote it by r s. Given an
element x P X the singleton list on x is the list rxs. Given a list L “ pn, fq and a number
i P N with i ď n, the ith entry of L is the element fpiq P X.

http://en.wikipedia.org/wiki/Coherence_theorem

72 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

Given two lists L “ pn, fq and L1 “ pn1, f 1q, define the concatenation of L and L1,
denoted L `̀ L1, to be the list pn` n1, f `̀ f 1q, where f `̀ f 1 : n` n1 Ñ X is given on
i ď n` n1 by

pf ``f 1qpiq :“
#

fpiq if i ď n

f 1pi´ nq if i ě n` 1

Example 3.1.1.14. Let X “ ta, b, c, . . . , zu. The following are elements of ListpXq:

ra, b, cs, rps, rp, a, a, a, ps, r s, . . .

The concatenation of ra, b, cs and rp, a, a, a, ps is ra, b, c, p, a, a, a, ps. The concatenation
of any list A with r s is just A.

Definition 3.1.1.15. Let X be a set. The free monoid generated by X is the sequence
M :“ pListpXq, r s, `̀ q, where ListpXq is the set of lists of elements in X, where r s P
ListpXq is the empty list, and where `̀ is the operation of list concatenation. We refer
to X as the set of generators for the monoid M .

Exercise 3.1.1.16. Let t,u denote a one-element set.

a.) What is the free monoid generated by t,u?

b.) What is the free monoid generated by H?

♦

In the definition below, we will define a monoid M by specifying some generators
and some relations. Lists of generators provide us all the possible ways to write elements
of M . The relations allow us to have two such ways of writing the same element. The
following definition is a bit dense, so see Example 3.1.1.19 for a concrete example.

Definition 3.1.1.17 (Presented monoid). Let G be a finite set, let n P N be a natural
number, 2 and for each 1 ď i ď n, let mi and m1i be elements of ListpGq. 3 The
monoid presented by generators G and relations tpmi,m

1
iq | 1 ď i ď nu is the monoid

M “ pM, e, ‹q defined as follows. Let „ denote the equivalence relation on ListpGq
generated by tpxmiy „ xm1iyq | x, y P ListpGq, 1 ď i ď nu, and define M “ ListpGq{ „.
Let e “ r s and let a ˚ b be obtained by concatenating representing lists.

Remark 3.1.1.18. Every free monoid is a presented monoid, because we can just take the
set of relations to be empty.
Example 3.1.1.19. Let G “ ta, b, c, du. Think of these as buttons that can be pressed.
The free monoid ListpGq is the set of all ways of pressing buttons, e.g. pressing a then a
then c then c then d corresponds to the list ra, a, c, c, ds. The idea of presented monoids
is that you notice that pressing ra, a, cs always gives the same result as pressing rd, ds.
You also notice that pressing rc, a, c, as is the same thing as doing nothing.

In this case, we would have m1 “ ra, a, cs, m11 “ rd, ds, and m2 “ rc, a, c, as,m
1
2 “ r s

and relations tpm1,m
1
1q, pm2,m

1
2qu. Really this means that we’re equating m1 with m11

and m2 with m12, which for convenience we’ll write out:

ra, a, cs “ rd, ds and ra, c, a, cs “ r s

2The number n P N is going to stand for the number of relations we declare.
3Each mi and m1i are going to be made equal in the set M .

3.1. MONOIDS 73

To see how this plays out, we give an example of a calculation in M “ ListpGq{ „.
Namely,

rb, c, b, d, d, a, c, a, a, c, ds “ rb, c, b, a, a, c, a, c, a, a, c, ds “ rb, c, b, a, a, a, c, ds

“ rb, c, b, a, d, d, ds.

Application 3.1.1.20 (Buffer). Let G “ ta, b, c, . . . zu. Suppose we have a buffer of 32
characters and we want to consider the set of lists of length at most 32 to be a monoid.
We simply have to decide what happens when someone types a list of length more than
32.

One option is to say that the last character typed overwrites the 32nd entry,

ra1, a2, . . . , a31, a32, bs „1 ra1, a2, . . . , a31, bs.

Another option is to say that any character typed after 32 entries is discarded,

ra1, a2, . . . , a31, a32, bs „2 ra1, a2, . . . , a31, a32s.

Both of these yield finitely presented monoids, generated by G. (In case it’s useful, the
number of necessary relations in both cases is 2633.)

♦♦

Exercise 3.1.1.21. Let’s consider the buffer concept again (see Application 3.1.1.20), but
this time only having size 3 rather than size 32. Show using Definition 3.1.1.17 that with
relations given by „1 we indeed have ra, b, c, d, e, f s “ ra, b, f s and that with relations
given by „2 we indeed have ra, b, c, d, e, f s “ ra, b, cs. ♦

Exercise 3.1.1.22. Let K :“ tBS, a, b, c, . . . , zu, a set having 27 elements. Suppose you
want to think of BS P K as the “backspace key” and the elements a, b, . . . z P K as the
letter keys on a keyboard. Then the free monoid ListpKq is not quite appropriate as a
model because we want ra, b, d,BSs “ ra, bs.

a.) Choose a set of relations for which the monoid presented by generators K and the
chosen relations is appropriate to this application.

b.) Under your relations, how does rBSs compare with r s? Is that suitable?

♦

3.1.1.23 Cyclic monoids

Definition 3.1.1.24. A monoid is called cyclic if it has a presentation involving only
one generator.

Example 3.1.1.25. Let Q be a symbol; we look at some cyclic monoids generated by
tQu. With no relations the monoid would be the free monoid on one generator, and
would have underlying set tr s, rQs, rQ,Qs, rQ,Q,Qs, . . .u, with identity element r s and
multiplication given by concatenation (e.g. rQ,Q,Qs `̀ rQ,Qs “ rQ,Q,Q,Q,Qs). This
is just N, the additive monoid of natural numbers.

With the really strong relation rQs „ r s we would get the trivial monoid, a monoid
having only one element (see Example 3.1.1.10).

Another possibility is given in the first part of Example 3.1.2.3, where the relation
Q12 „ r s is used, where Q12 is shorthand for rQ,Q,Q,Q,Q,Q,Q,Q,Q,Q,Q,Qs.

http://en.wikipedia.org/wiki/Data_buffer

74 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

Example 3.1.1.26. Consider the cyclic monoid with generator Q and relation Q7 “ Q4.
This monoid has seven elements, te “ Q0, Q “ Q1, Q2, Q3, Q4, Q5, Q6u, and we know
that Q6 ‹ Q5 “ Q7 ˚ Q4 “ Q4 ˚ Q4 “ Q7 ˚ Q “ Q5. One might depict this monoid as
follows

e
‚ // Q‚ // Q

2

‚ // Q
3

‚ // Q
4

‚

��
Q6

‚

AA

Q5

‚oo

To see the mathematical source of this intuitive depiction, see Example 5.2.1.17.
Exercise 3.1.1.27 (Classify the cyclic monoids). Classify all the cyclic monoids up to
isomorphism. That is, come up with a naming system such that every cyclic monoid can
be given a name in your system, such that no two non-isomorphic cyclic monoids have
the same name, and such that no name exists in the system unless it refers to a cyclic
monoid.

Hint: one might see a pattern in which the three monoids in Example 3.1.1.25 corre-
spond respectively to 8, 1, and 12, and then think “Cyclic monoids can be classified by
(i.e. systematically named by elements of) the set N \ t8u.” That idea is on the right
track, but is not correct. ♦

3.1.2 Monoid actions
Definition 3.1.2.1 (Monoid action). Let pM, e, ‹q be a monoid and let S be a set. An
action of pM, e, ‹q on S, or simply an action of M on S or an M -action on S, is a
function

ü : M ˆ S Ñ S

such that the following conditions hold for all m,n PM and all s P S:

• eü s “ s

• mü pnü sq “ pm ‹ nqü s. 4

Remark 3.1.2.2. To be pedantic (and because it’s sometimes useful), we may rewrite ü

as α : M ˆ S Ñ S and restate the conditions from Definition 3.1.2.1 as

• αpe, sq “ s, and

• αpm,αpn, sqq “ αpm ‹ n, sq.

Example 3.1.2.3. Let S “ t0, 1, 2, . . . , 11u and let N “ pN, 0,`q be the additive monoid
of natural numbers (see Example 3.1.1.3). We define a function ü : NˆS Ñ S by taking
a pair pn, sq to the remainder that appears when n ` s is divided by 12. For example
4 ü 2 “ 6 and 8 ü 9 “ 5. This function has the structure of a monoid action because
the two rules from Definition 3.1.2.1 hold.

4 Definition 3.1.2.1 actually defines a left action of pM, e, ‹q on S. A right action is like a left action
except the order of operations is somehow reversed. We will not really use right-actions in this text, but
we briefly define it here for completeness. With notation as above, the only difference is in the second
condition. We replace it by the condition that for all m,n PM and all s P S we have

m ü pn ü sq “ pn ‹mq ü s

3.1. MONOIDS 75

Similarly, let T denote the set of points on a circle, elements of which are denoted by
a real number in the interval r0, 12q, i.e.

T “ tx P R | 0 ď x ă 12u

and let R “ pR, 0,`q denote the additive monoid of real numbers. Then there is an
action Rˆ T Ñ T , similar to the one above (see Exercise 3.1.2.4).

One can think of this as an action of the monoid of time on the clock.
Exercise 3.1.2.4.

a.) Realize the set T :“ r0, 12q Ď R as the coequalizer of a pair of arrows RÑ R.

b.) For any x P R, realize the mapping x ¨ ´ : T Ñ T , implied by Example 3.1.2.3, using
the universal property of coequalizers.

c.) Prove that it is an action.

♦

Exercise 3.1.2.5. Let B denote the set of buttons (or positions) of a video game controller
(other than, say ‘start’ and ‘select’), and consider the free monoid ListpBq on B.

a.) What would it mean for ListpBq to act on the set of states of some game? Imagine
a video game G1 that uses the controller, but for which ListpBq would not be said to
act on the states of G1. Now imagine a simple game G for which ListpBq would be
said to act.

b.) Can you think of a state s of G, and two distinct elements `, `1 P ListpBq such that
`ü s “ `1 ü s? In video game parlance, what would you call an element b P B such
that, for every state s P G, one has bü s “ s?

c.) In video game parlance, what would you call a state s P S such that, for every
sequence of buttons ` P ListpBq, one has `ü s “ s?

♦

Application 3.1.2.6. Let f : RÑ R be a differentiable function of which we want to find
roots (points x P R such that fpxq “ 0). Let x0 P R be a starting point. For any n P N
we can apply Newton’s method to xn to get

xn`1 “ xn ´
fpxnq

f 1pxnq
.

This is a monoid (namely N, the free monoid on one generator) acting on a set (namely
R).

However, Newton’s method can get into trouble. For example at a critical point it
causes division by 0, and sometimes it can oscillate or overshoot. In these cases we want
to perturb a bit to the left or right. To have these actions available to us, we would add
“perturb” elements to our monoid. Now we have more available actions at any point,
but at the cost of using a more complicated monoid.

When publishing an experimental finding, there may be some deep methodological
questions that are not considered suitably important to mention. For example, one may
not publish the kind solution finding method (e.g. Newton’s method or Runge-Kutta)
that was used, nor the set of available actions, e.g. what kinds of perturbation were used
by the researcher. However, these may actually influence the reproducibility of results.

http://en.wikipedia.org/wiki/Newton's_method

76 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

By using a language such as that of monoid actions, we can align our data model with
our unspoken assumptions about how functions are analyzed.

♦♦

Remark 3.1.2.7. A monoid is useful for understanding how an agent acts on the set of
states of an object, but there is only one kind of action. At any point, all actions are
available. In reality it is often the case that contexts can change and different actions
are available at different times. For example on a computer, the commands available in
one application have no meaning in another. This will get us to categories in the next
chapter.

3.1.2.8 Monoids actions as ologs

If monoids are understood in terms of how they act on sets, then it is reasonable to think
of them in terms of ologs. In fact, the ologs associated to monoids are precisely those
ologs that have exactly one type (and possibly many arrows and commutative diagrams).
Example 3.1.2.9. In this example we show how to associate an olog to a monoid action.
Consider the monoid M generated by the set tu, d, ru, standing for “up, down, right”,
and subject to the relations

ru, ds „ r s, rd, us „ r s, ru, rs “ rr, us, and rd, rs “ rr, ds.

We might imagine that M acts on the set of positions for a character in an old video
game. In that case the olog corresponding to this action should look something like the
following:

a character
position

when moved up
results in

when moved
down results in

when moved right
results in

Given x, a character position, consider the following. We know that x is a
character position, which when moved up results in a character position, which
when moved down results in a character position that we’ll call P(x). We also
know that x is a character position that we’ll call Q(x). Fact: whenever x is a
character position we will have P(x)=Q(x). Summary: [up, down] = []

Given x, a character position, consider the following. We know that x is a
character position, which when moved down results in a character position,
which when moved up results in a character position that we’ll call P(x). We also
know that x is a character position that we’ll call Q(x). Fact: whenever x is a
character position we will have P(x)=Q(x). Summary: [down, up] = []

Given x, a character position, consider the following. We know that x is a
character position, which when moved up results in a character position, which
when moved right results in a character position that we’ll call P(x). We also
know that x is a character position, which when moved right results in a
character position, which when moved up results in a character position that
we’ll call Q(x). Fact: whenever x is a character position we will have P(x)=Q(x).
Summary: [up, right] = [right, up]

Given x, a character position, consider the following. We know that x is a
character position, which when moved down results in a character position,
which when moved right results in a character position that we’ll call P(x). We
also know that x is a character position, which when moved right results in a
character position, which when moved down results in a character position that
we’ll call Q(x). Fact: whenever x is a character position we will have P(x)=Q(x).
Summary: [down, right] = [right, down]

3.1.2.10 Finite state machines

According to Wikipedia, a deterministic finite state machine is a quintuple pΣ, S, s0, δ, F q,
where

1. Σ is a finite non-empty set of symbols, called the input alphabet,

2. S is a finite, non-empty set, called the state set,

3. δ : Σˆ S Ñ S is a function, called the state-transition function, and

http://en.wikipedia.org/wiki/Finite_state_machine#Mathematical_model

3.1. MONOIDS 77

4. s0 P S is an element, called the initial state,

5. F Ď S is a subset, called the set of final states.

In this book we will not worry about the initial state and the set of final states,
concerning ourselves more with the interaction via δ of the alphabet Σ on the set S of
states.

State 0

State 1

State 2

a
b

a

a

b

b

Figure 3.1: A finite state machine with alphabet Σ “ ta, bu and state set S “

tState 0, State 1, State 2u. If pressed, we will make State 0 the initial state and {State
2} the set of final states.

The following proposition expresses the notion of finite state automata in terms of
free monoids and their actions on finite sets.

Proposition 3.1.2.11. Let Σ, S be finite non-empty sets. Giving a function δ : ΣˆS Ñ
S is equivalent to giving an action of the free monoid ListpΣq on S.

Proof. By Definition 3.1.2.1, we know that function ε : ListpΣq ˆ S Ñ S constitutes an
action of the monoid ListpΣq on the set S if and only if, for all s P S we have εpr s, sq “ s,
and for any two elements m,m1 P ListpΣq we have εpm, εpm1, sqq “ εpm ‹m1, sq, where
m ‹m1 is the concatenation of lists. Let

A “ tε : ListpΣq ˆ S Ñ S | ε constitutes an actionu.

We need to prove that there is an isomorphism of sets

φ : A –
ÝÑ HomSetpΣˆ S, Sq.

Given an element ε : ListpΣqˆS Ñ S in A, define φpεq on an element pσ, sq P ΣˆS by
φpεqpσ, sq :“ εprσs, sq, where rσs is the one-element list. We now define ψ : HomSetpΣˆ
S, Sq Ñ A.

Given an element f P HomSetpΣ ˆ S, Sq, define ψpfq : ListpΣq ˆ S Ñ S on a pair
pL, sq P ListpΣq ˆ S, where L “ rε1, . . . , εns as follows. By induction, if n “ 0, put
ψpfqpL, sq “ s; if n ě 1, let L1 “ rε1, . . . , εn´1s and put ψpfqpL, sq “ ψpfqpL1, fpεn, sqq.
One checks easily that ψpfq satisfies the two rules above, making it an action of ListpΣq
on S. It is also easy to check that φ and ψ are mutually inverse, completing the proof.

�

78 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

We sum up the idea of this section as follows:

Slogan 3.1.2.12.

“ A finite state machine is an action of a free monoid on a finite set. ”

Exercise 3.1.2.13. Consider the functions φ and ψ above.

a.) Show that for any f : Σ ˆ S Ñ S, the map ψpfq : ListpΣq ˆ S Ñ S constitutes an
action.

b.) Show that φ and ψ are mutually inverse functions (i.e. φ ˝ ψ “ idHompΣˆS,Sq and
ψ ˝ φ “ idA.)

♦

3.1.3 Monoid action tables
Let M be a monoid generated by the set G “ tg1, . . . , gmu, and with some relations,
and suppose that α : M ˆ S Ñ S is an action of M on a set S “ ts1, . . . , snu. We can
represent the action α using an action table whose columns are the elements of G and
whose rows are the elements of S. In each cell prow, colq, where row P S and col P G,
we put the element αpcol, rowq P S.
Example 3.1.3.1 (Action table). If Σ and S are the sets from Figure 3.1, the displayed
action of ListpΣq on S would be given by the action table

Action from 3.1
ID a b
State 0 State 1 State 2
State 1 State 2 State 1
State 2 State 0 State 0

(3.2)

Example 3.1.3.2 (Multiplication action table). Every monoid acts on itself by its multi-
plication formula, MˆM ÑM . If G is a generating set for M , we can write the elements
of G as the columns and the elements of M as rows, and call this a multiplication table.
For example, let pN, 1, ˚q denote the multiplicative monoid of natural numbers. The
multiplication table is as follows:

Multiplication of natural numbers
N 0 1 2 3 4 5 ¨ ¨ ¨

0 0 0 0 0 0 0 ¨ ¨ ¨

1 0 1 2 3 4 5 ¨ ¨ ¨

2 0 2 4 6 8 10 ¨ ¨ ¨

3 0 3 6 9 12 15 ¨ ¨ ¨

4 0 4 8 12 16 20 ¨ ¨ ¨

...
...

...
...

...
...

...
. . .

21 0 21 42 63 84 105 ¨ ¨ ¨

...
...

...
...

...
...

...
. . .

(3.3)

3.1. MONOIDS 79

Try to understand what is meant by this: “applying column 2 and then column 2 returns
the same thing as applying column 4.”

In the above table, we were implicitly taking every element of N as a generator (since
we had a column for every natural number). In fact, there is a smallest generating
set for the monoid pN, 1, ˚q, so that every element of the monoid is a product of some
combination of these generators, namely the primes and 0.

Multiplication of natural numbers
N 0 2 3 5 7 11 ¨ ¨ ¨

0 0 0 0 0 0 0 ¨ ¨ ¨

1 0 2 3 5 7 11 ¨ ¨ ¨

2 0 4 6 10 14 22 ¨ ¨ ¨

3 0 6 9 15 21 33 ¨ ¨ ¨

4 0 8 12 20 28 44 ¨ ¨ ¨

...
...

...
...

...
...

...
. . .

21 0 42 63 105 147 231 ¨ ¨ ¨

...
...

...
...

...
...

...
. . .

Exercise 3.1.3.3. Let N be the additive monoid of natural numbers, let S “ t0, 1, 2, . . . , 11u,
and let ¨ : NˆS Ñ S be the action given in Example 3.1.2.3. Using a nice small generating
set for the monoid, write out the corresponding action table. ♦

3.1.4 Monoid homomorphisms
A monoid pM, e, ‹q involves a set, an identity element, and a multiplication formula. For
two monoids to be comparable, their sets, their identity elements, and their multiplication
formulas should be appropriately comparable. For example the additive monoids N and
Z should be comparable because N Ď Z is a subset, the identity elements in both cases
are the same e “ 0, and the multiplication formulas are both integer addition.

Definition 3.1.4.1. Let M :“ pM, e, ‹q and M1 :“ pM 1, e1, ‹1q be monoids. A monoid
homomorphism f from M to M1, denoted f : M Ñ M1, is a function f : M Ñ M 1

satisfying two conditions:

• fpeq “ e1, and

• fpm1 ‹m2q “ fpm1q ‹
1 fpm2q, for all m1,m2 PM .

The set of monoid homomorphisms from M to M1 is denoted HomMonpM,M1q.

Example 3.1.4.2 (From N to Z). As stated above, the inclusion map i : NÑ Z induces a
monoid homomorphism pN, 0,`q Ñ pZ, 0,`q because ip0q “ 0 and ipn1 ` n2q “ ipn1q `
ipn2q.

Let i5 : NÑ Z denote the function i5pnq “ 5 ˚n, so i5p4q “ 20. This is also a monoid
homomorphism because i5p0q “ 5˚0 “ 0 and i5pn1`n2q “ 5˚pn1`n2q “ 5˚n1`5˚n2 “
i5pn1q ` i5pn2q.

Application 3.1.4.3. Let R “ ta, c, g, uu and let T “ R3, the set of triplets in R. Let
R “ ListpRq be the free monoid on R and let T “ ListpT q denote the free monoid on

80 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

T . There is a monoid homomorphism F : T Ñ R given by sending t “ pr1, r2, r3q to the
list rr1, r2, r3s. 5

If A be the set of amino acids and A “ ListpAq the free monoid on A, the process
of translation gives a monoid homomorphism G : T Ñ A, turning a list of RNA triplets
into a polypeptide. But how do we go from a list of RNA nucleotides to a polypeptide?
The answer is that there is no good way to do this mathematically. So what is going
wrong?

The answer is that there should not be a monoid homomorphism RÑ A because not
all sequences of nucleotides produce a polypeptide; for example if the sequence has only
two elements, it does not code for a polypeptide. There are several possible remedies to
this problem. One is to take the image of F , which is a submonoid R1 Ď R. It is not
hard to see that there is a monoid homomorphism F 1 : R1 Ñ T , and we can compose it
with G to get our desired monoid homomorphism G ˝ F 1 : R1 Ñ A. 6

♦♦

Example 3.1.4.4. Given any monoids M there is a unique monoid homomorphism from
M to the trivial monoid 1 (see Example 3.1.1.10). There is also a unique homomorphism
1 ÑM. These facts together have an upshot: between any two monoidsM andM1 we
can always construct a homomorphism

M !
ÝÝÝÑ 1 !

ÝÝÝÑM1

which we call the trivial homomorphism M ÑM1. A morphism M ÑM1 that is not
trivial is called a nontrivial homomorphism.

Proposition 3.1.4.5. Let M “ pZ, 0,`q and M1 “ pN, 0,`q. The only monoid homo-
morphism f : MÑM1 sends every element m P Z to 0 P N.

Proof. Let f : MÑM1 be a monoid homomorphism, and let n “ fp1q and n1 “ fp´1q
in N. Then we know that since 0 “ 1`p´1q in Z we must have 0 “ fp0q “ fp1`p´1qq “
fp1q ` fp´1q “ n ` n1 P N. But if n ě 1 then this is impossible, so n “ 0. Similarly
n1 “ 0. Any element m P Z can be written m “ 1`1`¨ ¨ ¨`1 or as m “ ´1`´1`¨ ¨ ¨`´1,
and it is easy to see that fp1q ` fp1q ` ¨ ¨ ¨ ` fp1q “ 0 “ fp´1q ` fp´1q ` ¨ ¨ ¨ ` fp´1q.
Therefore, fpmq “ 0 for all m P Z.

�

Exercise 3.1.4.6. For any m P N let im : N Ñ Z be the function impnq “ m ˚ n. All
such functions are monoid homomorphisms pN, 0,`q Ñ pZ, 0,`q. Do any monoid homo-
morphisms pN, 0,`q Ñ pZ, 0,`q not come in this way? For example, what about using
n ÞÑ 5 ˚ n´ 1 or n ÞÑ n2, or some other function? ♦

Exercise 3.1.4.7. LetM :“ pN, 0,`q be the additive monoid of natural numbers, let N “

pRě0, 0,`q be the additive monoid of nonnegative real numbers, and let P :“ pRą0, 1, ˚q
be the multiplicitive monoid of positive real numbers. Can you think of any nontrivial
monoid homomorphisms of the following sorts:

MÑ N , MÑ P, N Ñ P, N ÑM, P Ñ N ?

♦

5More precisely, the monoid homomorphism F sends a list rt1, t2, . . . , tns to the list
rr1,1, r1,2, r1,3, r2,1, r2,2, r2,3, . . . , rn,1, rn,2, rn,3s, where for each 0 ď i ď n we have ti “ pri,1, ri,2, ri,3q.

6Adding stop-codons to the mix we can handle more of R, e.g. sequences that don’t have a multiple-
of-three many nucleotides.

http://en.wikipedia.org/wiki/Translation_(biology)

3.1. MONOIDS 81

3.1.4.8 Homomorphisms from free monoids

Recall that pN, 0,`q is the free monoid on one generator. It turns out that for any other
monoid M “ pM, e, ‹q, the set of monoid homomorphisms N ÑM is in bijection with
the set M . This is a special case (in which G is a set with one element) of the following
proposition.

Proposition 3.1.4.9. Let G be a set, let F pGq :“ pListpGq, r s, `̀ q be the free monoid
on G, and let M :“ pM, e, ‹q be any monoid. There is a natural bijection

HomMonpF pGq,Mq
–
ÝÑ HomSetpG,Mq.

Proof. We provide a function φ : HomMonpF pGq,Mq Ñ HomSetpG,Mq and a function
ψ : HomSetpG,Mq Ñ HomMonpF pGq,Mq and show that they are mutually inverse. Let
us first construct φ. Given a monoid homomorphism f : F pGq ÑM, we need to provide
φpfq : GÑM . Given any g P G we define φpfqpgq :“ fprgsq.

Now let us construct ψ. Given p : G Ñ M , we need to provide ψppq : ListpGq ÑM
such that ψppq is a monoid homomorphism. For a list L “ rg1, . . . , gns P ListpGq, define
ψppqpLq :“ ppg1q ‹ ¨ ¨ ¨ ‹ ppgnq P M . In particular, ψppqpr sq “ e. It is not hard to see
that this is a monoid homomorphism. It is also easy to see that φ ˝ ψppq “ p for all
p P HomSetpG,Mq. We show that ψ ˝ φpfq “ f for all f P HomMonpF pGq,Mq. Choose
L “ rg1, . . . , gns P ListpGq. Then

ψpφfqpLq “ pφfqpg1q ‹ ¨ ¨ ¨ ‹ pφfqpgnq “ f rg1s ‹ ¨ ¨ ¨ ‹ f rgns “ fprg1, . . . , gnsq “ fpLq.

�

Exercise 3.1.4.10. Let G “ ta, bu, let M :“ pM, e, ‹q be any monoid, and let f : GÑM
be given by fpaq “ m and fpbq “ n, where m,n P M . If ψ : HomSetpG,Mq Ñ
HomMonpF pGq,Mq is the function from the proof of Proposition 3.1.4.9 and L “

ra, a, b, a, bs, what is ψpfqpLq ? ♦

3.1.4.11 Restriction of scalars

A monoid homomorphism f : M ÑM 1 (see Definition 3.1.4.1) ensures that the elements
of M have a reasonable interpretation in M 1; they act the same way over in M 1 as
they did back home in M . If we have such a homomorphism f and we have an action
α : M 1 ˆ S Ñ S of M 1 on a set S, then we have a method for allowing M to act on S as
well. Namely, we take an element of M , send it over to M 1, and act on S. In terms of
functions, we compose α with the function f ˆ idS : M ˆ S ÑM 1 ˆ S, to get a function
we’ll denote

∆f pαq : M ˆ S Ñ S.

After Proposition 3.1.4.12 we will know that ∆f pαq is indeed a monoid action, and we
say that it is given by restriction of scalars along f .

Proposition 3.1.4.12. Let M :“ pM, e, ‹q and M1 :“ pM 1, e1, ‹1q be monoids, f : MÑ

M1 a monoid homomorphism, S a set, and suppose that α : M 1 ˆ S Ñ S is an action of
M1 on S. Then ∆f pαq : M ˆ S Ñ S, defined as above, is a monoid action as well.

82 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

Proof. Refer to Remark 3.1.2.2; we assume α is a monoid action and want to show that
∆f pαq is too. We have ∆f pαqpe, sq “ αpfpeq, sq “ αpe1, sq “ s. We also have

∆f pαqpm,∆f pαqpn, sqq “ αpfpmq, αpfpnq, sqq “ αpfpmq ‹1 fpnq, sq

“ αpfpm ‹ nq, sq

“ ∆f pαqpm ‹ n, sq.

�

Example 3.1.4.13. Let N and Z denote the additive monoids of natural numbers and
integers, respectively, and let i : N Ñ Z be the inclusion, which we saw in Example
3.1.4.2 is a monoid homomorphism. There is an action α : Z ˆ R Ñ R of the monoid
Z on the set R of real numbers, given by αpn, xq “ n ` x. Clearly, this action works
just as well if we restrict our scalars to N Ď Z, allowing ourselves only to add natural
numbers to reals. The action ∆iα : NˆRÑ R is given on pn, xq P NˆR by ∆iαpn, xq “
αpipnq, xq “ αpn, xq “ n` x, just as expected.
Example 3.1.4.14. Suppose that V is a complex vector space. In particular, this means
that the monoid C of complex numbers (under multiplication) acts on the elements of V .
If i : RÑ C is the inclusion of the real line inside C, then i is a monoid homomorphism.
Restriction of scalars in the above sense turns V into a real vector space, so the name
“restriction of scalars” is apt.
Exercise 3.1.4.15. Let N be the free monoid on one generator, let Σ “ ta, bu, and let
S “ tState 0, State 1, State 2u. Consider the map of monoids f : NÑ ListpΣq given by
sending 1 ÞÑ ra, b, bs. The monoid action α : ListpΣq ˆ S Ñ S given in Example 3.1.3.1
can be transformed by restriction of scalars along f to an action ∆f pαq of N on S. Write
down its action table. ♦

3.2 Groups
Groups are monoids in which every element has an inverse. If we think of these structures
in terms of how they act on sets, the difference between groups and monoids is that the
action of every group element can be undone. One way of thinking about groups is in
terms of symmetries. For example, the rotations and reflections of a square form a group.

Another way to think of the difference between monoids and groups is in terms of
time. Monoids are likely useful in thinking about diffusion, in which time plays a role and
things cannot be undone. Groups are more likely useful in thinking about mechanics,
where actions are time-reversible.

3.2.1 Definition and examples
Definition 3.2.1.1. Let pM, e, ‹q be a monoid. An element m P M is said to have an
inverse if there exists an m1 PM such that mm1 “ e and m1m “ e. A group is a monoid
pM, e, ‹q in which every element m PM has an inverse.

Proposition 3.2.1.2. Suppose that M :“ pM, e, ‹q is a monoid and let m P M be an
element. Then m has at most one inverse. 7

7If M is a group then every element m has exactly one inverse.

3.2. GROUPS 83

Proof. Suppose that both m1 and m2 are inverses of m; we want to show that m1 “ m2.
This follows by the associative law for monoids:

m1 “ m1pmm2q “ pm1mqm2 “ m2.

�

Example 3.2.1.3. The additive monoid pN, 0,`q is not a group because none of its ele-
ments are invertible, except for 0. However, the monoid of integers pZ, 0,`q is a group.
The monoid of clock positions from Example 3.1.1.25 is also a group. For example the
inverse of Q5 is Q7 because Q5 ‹Q7 “ e “ Q7 ‹Q5.

Example 3.2.1.4. Consider a square centered at the origin in R2. It has rotational and
mirror symmetries. There are eight of these, which we denote

te, ρ, ρ2, ρ3, φ, φρ, φρ2, φρ3u,

where ρ stands for 90˝ counterclockwise rotation and φ stands for horizontal-flip (across
the vertical axis). So relations include ρ4 “ e, φ2 “ e, and ρ3φ “ φρ.

Example 3.2.1.5. The set of 3ˆ3 matrices can be given the structure of a monoid, where
the identity element is the 3ˆ 3 identity matrix, the multiplication is matrix multiplica-
tion. The subset of invertible matrices forms a group, called the general linear group of
dimension 3 and denoted GL3. Inside of GL3 is the so-called orthogonal group, denoted
O3, of matrices M such that M´1 “ MJ. These matrices correspond to symmetries of
the sphere centered at the origin.

Another interesting group is the Euclidean group Ep3q which consists of all isometries
of R3, i.e. all functions R3 Ñ R3 that preserve distances.

Application 3.2.1.6. In crystallography one is often concerned with the symmetries that
arise in the arrangement A of atoms in a molecule. To think about symmetries in terms of
groups, we first define an atom-arrangement to be a finite subset i : A Ď R3. A symmetry
in this case is an isometry of R3 (see Example 3.2.1.5), say f : R3 Ñ R3 such that there
exists a dotted arrow making the diagram below commute:

A //

i
��

A

i
��

R3
f
// R3

That is, it’s an isometry of R3 such that each atom of A is sent to a position currently
occupied by an atom of A. It is not hard to show that the set of such isometries forms
a group, called the space group of the crystal.

♦♦

Exercise 3.2.1.7. Let S be a finite set. A permutation of S is an isomorphism f : S –
ÝÑ S.

http://en.wikipedia.org/wiki/Crystallography
http://en.wikipedia.org/wiki/Space_group

84 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

S

s1

s4

s2

s3

S

s1

s4

s2

s3

a.) Come up with an identity, and a multiplication formula, such that the set of permu-
tations of S forms a monoid.

b.) Is it a group?

♦

Exercise 3.2.1.8. In Exercise 3.1.1.27 you classified the cyclic monoids. Which of them
are groups? ♦

Definition 3.2.1.9 (Group action). Let pG, e, ‹q be a group and S a set. An action of
G on S is a function ü : Gˆ S Ñ S such that for all s P S and g, g1 P G, we have

• eü s “ s and

• g ü pg1 ü sq “ pg ‹ g1qü s.

In other words, considering G as a monoid, it is an action in the sense of Definition
3.1.2.1.

Example 3.2.1.10. When a group acts on a set, it has the character of symmetry. For
example, consider the group whose elements are angles θ. This group may be denoted
Up1q and is often formalized as the unit circle in C of complex numbers z “ a ` bi
such that |z| “ a2 ` b2 “ 1. The set of such points is given the structure of a group
pUp1q, e, ‹q by defining the identity element to be e :“ 1 ` 0i and the group law to be
complex multiplication. But for those unfamiliar with complex numbers, this is simply
angle addition where we understand that 360˝ “ 0˝. If θ1 “ 190˝ and θ2 “ 278˝, then
θ1 ‹ θ2 “ 468˝ “ 108˝. In the language of complex numbers, z “ eiθ.

The group Up1q acts on any set that we can picture as having rotational symmetry
about a fixed axis, such as the earth around the north-south axis. We will define S “
tpx, y, zq P R3 | x2 ` y2 ` z2 “ 1u, the unit sphere, and understand the rotational action
of Up1q on S.

We first show that Up1q acts on R3 by θ ü px, y, zq “ px cos θ ` y sin θ,´x sin θ `
y cos θ, zq, or with matrix notation as

θ ü px, y, zq :“ px, y, zq

¨

˝

cospθq ´ sinpθq 0
sinpθq cospθq 0

0 0 1

˛

‚

Trigonometric identities ensure that this is indeed an action.

http://en.wikipedia.org/wiki/Symmetry
http://en.wikipedia.org/wiki/List_of_trigonometric_identities#Matrix_form

3.2. GROUPS 85

In terms of action tables, we would need infinitely many columns to express this
action. Here is a sample

Action of Up1q on R3

R3 θ “ 45˝ θ “ 90˝ θ “ 100˝
(0,0,0) (0,0,0) (0,0,0) (0,0,0)
(1,0,0) (.71,.71,0) (0,1,0) (-.17,.98,0)
(0,1,-4.2) (-.71,.71,-4.2) (-1,0,-4.2) (-.98,-.17,-4.2)
(3,4,2) (4.95,.71,2) (-4,3,2) (3.42,-3.65,2)
...

...
...

...

Finally, we are looking to see that the action preserves length so that if px, y, zq P S
then θ ü px, y, zq P S; this way we will have confirmed that Up1q indeed acts on S. The
calculation begins by assuming x2 ` y2 ` z2 “ 1 and checks

px cos θ ` y sin θq2 ` p´x sin θ ` y cos θq2 ` z2 “ x2 ` y2 ` z2 “ 1.

Exercise 3.2.1.11. Let X be a set and consider the group of permutations of X (see
Exercise 3.2.1.7), which we will denote ΣX . Find a canonical action of ΣX on X. ♦

Definition 3.2.1.12. Let G be a group acting on a set X. For any point x P X, the
orbit of x, denoted Gx, is the set

Gx :“ tx1 P X | Dg P G such that gx “ x1u.

Application 3.2.1.13. Let S be the surface of the earth, understood as a sphere, and let
G “ Up1q be the group of angles acting on S as in Example 3.2.1.10. The orbit of any
point p “ px, y, zq P S is the set of points on the same latitude line as p.

One may also consider a small band around the earth, i.e. the setA “ tpx, y, zq | 1.0 ď
x2 ` y2 ` z2 ď 1.05u. The action of Up1q ü S extends to an action Up1q ü A. The
orbits are latitude-lines-at-altitude. A simplifying assumption in climatology may be
given by assuming that Up1q acts on all currents in the atmosphere in an appropriate
sense. That way, instead of considering movement within the whole space A, we only
allow movement that behaves the same way throughout each orbit of the group action.

♦♦

Exercise 3.2.1.14.

a.) Consider the Up1q action on R3 given in Example 3.2.1.10. Describe the set of orbits
of this action.

b.) What are the orbits of the action of the permutation group Σt1,2,3u on the set t1, 2, 3u?
(See Exercise 3.2.1.11.)

♦

Exercise 3.2.1.15. Let G be a group and X a set on which G acts by ü : G ˆX Ñ X.
Is “being in the same orbit” an equivalence relation on X? ♦

Definition 3.2.1.16. Let G and G1 be groups. A group homomorphism f : G Ñ G1 is
defined to be a monoid homomorphism GÑ G1, where G and G1 are being regarded as
monoids in accordance with Definition 3.2.1.1.

http://en.wikipedia.org/wiki/Climatology

86 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

3.3 Graphs
In this course, unless otherwise specified, whenever we speak of graphs we are not talking
about curves in the plane, such as parabolas, or pictures of functions generally. We are
speaking of systems of vertices and arrows.

We will take our graphs to be directed, meaning that every arrow points from a vertex
to a vertex; rather than merely connecting vertices, arrows will have direction. If a and
b are vertices, there can be many arrows from a to b, or none at all. There can be arrows
from a to itself. Here is the formal definition in terms of sets and functions.

3.3.1 Definition and examples
Definition 3.3.1.1. A graph G consists of a sequence G :“ pV,A, src, tgtq where

• V is a set, called the set of vertices of G (singular:vertex),

• A is a set, called the set of arrows of G,

• src : AÑ V is a function, called the source function for G, and

• tgt : AÑ V is a function, called the target function for G.

Given an arrow a P A we refer to srcpaq as the source vertex of a and to tgtpaq as the
target vertex of a.

To draw a graph, first draw a dot for every element of V . Then for every element
a P A, draw an arrow connecting dot srcpaq to dot tgtpaq.
Example 3.3.1.2 (Graph). Here is a picture of a graph G “ pV,A, src, tgtq:

G :“

‚v
f // ‚w

h

==

g

##
‚x

‚y

i

��
j

##
‚z

k

aa

(3.4)

We have V “ tv, w, x, y, zu and A “ tf, g, h, i, j, ku. The source and target functions
src, tgt : AÑ V can be captured in the table to the left below:

A src tgt
f v w
g w x
h w x
i y y
j y z
k z y

V
v
w
x
y
z

In fact, all of the data of the graph G is captured in the two tables above—together they
tell us the sets A and V and the functions src and tgt.

3.3. GRAPHS 87

Example 3.3.1.3. Every olog has an underlying graph. The additional information in an
olog has to do with which pairs of paths are declared equivalent, as well as text that has
certain English-readability rules.
Exercise 3.3.1.4. a.) Draw the graph corresponding to the following tables:

A src tgt
f v w
g v w
h v w
i x w
j z w
k z z

V
u
v
w
x
y
z

b.) Write down two tables, as above, corresponding to the following graph:

a
‚

1 // b‚
2 //

3
 c
‚

4

__
5 // d‚

e
‚

f
‚

6
oo

7
// g‚

8

BB

♦

Exercise 3.3.1.5. Let A “ t1, 2, 3, 4, 5u and B “ ta, b, cu. Draw them and choose an
arbitrary function f : A Ñ B and draw it. Let A \ B be the coproduct of A and
B (Definition 2.4.2.1) and let A i1

ÝÑ A \ B
i2
ÐÝ B be the two inclusions. Consider

the two functions src, tgt : A Ñ A \ B, where src “ i1 and tgt is the composition
A

f
ÝÑ B

i2
ÝÑ A\B. Draw the associated graph pA\B,A, src, tgtq. ♦

Exercise 3.3.1.6.

a.) Let V be a set. Suppose we just draw the elements of V as vertices and have no
arrows between them. Is this a graph?

b.) Given V , is there any other “canonical” or somehow automatic non-random proce-
dure for generating a graph with those vertices?

♦

Example 3.3.1.7. Recall from Construction 2.5.2.5 the notion of bipartite graph, which
we defined to be a span (i.e. pair of functions, see Definition 2.5.2.1) A f

ÐÝ R
g
ÝÑ B. Now

that we have a formal definition of graph, we might hope that bipartite graphs fit in,
and they do. Let V “ A \ B and let i : A Ñ V and j : B Ñ V be the inclusions. Let
src “ i ˝ f : RÑ V and let tgt “ j ˝ g : RÑ V be the composites.

A

i

R

src ''
tgt

77

f
??

g
��

V

B

j

>>

88 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

Then pV,R, src, tgtq is a graph that would be drawn exactly as we specified the drawing
of spans in Construction 2.5.2.5.
Example 3.3.1.8. Let n P N be a natural number. The chain graph of length n, denoted
rns is the graph depicted here:

0
‚ // 1‚ // ¨ ¨ ¨ // n‚

In general rns has n arrows and n` 1 vertices. In particular, when n “ 0 we have that
r0s is the graph consisting of a single vertex and no arrows.
Example 3.3.1.9. Let G “ pV,A, src, tgtq be a graph; we want to spread it out over
discrete time, so that each arrow does not occur within a given time-slice but instead
over a quantum unit of time.

Let N “ pN,N, n ÞÑ n, n ÞÑ n` 1q be the graph depicted

0
‚

0 // 1‚
1 // 2‚

2 // ¨ ¨ ¨

When we get to limits in a category, we will understand that products can be taken in
the category of graphs (see Example 4.5.1.5), and N ˆG will make sense. For now, we
construct it by hand.

Let T pGq “ pV ˆ N, Aˆ N, src1, tgt1q be a new graph, where for a P A and n P N we
have src1pa, nq :“ psrcpaq, nq and tgt1pa, nq “ ptgtpaq, n` 1q. This may be a bit much to
swallow, so try to simply understand what is being done in the following example.

Let G be the graph drawn below

a
‚

f

��

g
��
b
‚

Then T pGq will be the graph

a0
‚

f0 //

g0
��

a1
‚

f1 //

g1
��

a2
‚

f2 //

g2
��

¨ ¨ ¨

b0
‚

b1
‚

b2
‚ ¨ ¨ ¨

As you can see, f -arrows still take a’s to a’s and g-arrows still take a’s to b’s, but they
always march forward in time.
Exercise 3.3.1.10. Let G be the graph depicted below:

a
‚

w

%%
x ::

b
‚

y

ee zdd

Draw (using ellipses “¨ ¨ ¨ ” if necessary) the graph T pGq defined in Example 3.3.1.9. ♦

3.3. GRAPHS 89

Exercise 3.3.1.11. Consider the infinite graph G “ pV,A, src, tgtq depicted below,

...
...

...

p0, 2q //

OO

p1, 2q //

OO

p2, 2q //

OO

¨ ¨ ¨

p0, 1q //

OO

p1, 1q //

OO

p2, 1q //

OO

¨ ¨ ¨

p0, 0q //

OO

p1, 0q //

OO

p2, 0q //

OO

¨ ¨ ¨

a.) Write down the sets A and V .

b.) What are the source and target function AÑ V ?

♦

Exercise 3.3.1.12. A graph is a pair of functions A Ñ V . This sets up the notion of
equalizer and coequalizer (see Definitions 2.5.3.1 and 2.6.3.1).

a.) What feature of a graph is captured by the equalizer of its source and target func-
tions?

b.) What feature of a graph is captured by the coequalizer of its source and target
functions?

♦

3.3.2 Paths in a graph
We all know what a path in a graph is, especially if we understand that a path must
always follow the direction of arrows. The following definition makes this idea precise.
In particular, one can have paths of any finite length n P N, even length 0 or 1. Also,
we want to be able to talk about the source vertex and target vertex of a path, as well
as concatenation of paths.

Definition 3.3.2.1. Let G “ pV,A, src, tgtq be a graph. A path of length n in G,
denoted p P PathpnqG is a head-to-tail sequence

p “ pv0
a1
ÝÑ v1

a2
ÝÑ v2

a3
ÝÑ . . .

an
ÝÝÑ vnq (3.5)

of arrows in G, which we denote by v0a1a2 . . . an. In particular we have canonical iso-
morphisms Pathp1qG – A and Pathp0qG – V ; we refer to the path of length 0 on vertex v
as the trivial path on v and denote it simply by v. We denote by PathG the set of paths
in G,

PathG :“
ď

nPN

PathpnqG .

Every path p P PathG has a source vertex and a target vertex, and we may denote these
by src, tgt : PathG Ñ V . If p is a path with srcppq “ v and tgtppq “ w, we may denote

90 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

it by p : v Ñ w. Given two vertices v, w P V , we write PathGpv, wq to denote the set of
all paths p : v Ñ w.

There is a concatenation operation on paths. Given a path p : v Ñ w and q : w Ñ x,
we define the concatenation, denoted pq : v Ñ x in the obvious way. If p “ va1, a2 . . . am
and q “ wb1b2 . . . bn then pq “ va1 . . . amb1 . . . bn. In particular, if p (resp. r) is the
trivial path on vertex v (resp. vertex w) then for any path q : v Ñ w, we have pq “ q
(resp. qr “ q).

Example 3.3.2.2. In Diagram (3.4), page 86, there are no paths from v to y, one path
(f) from v to w, two paths (fg and fh) from v to x, and infinitely many paths

tyip1pjkqq1 ¨ ¨ ¨ ipnpjkqqn | n, p1, q1, . . . , pn, qn P Nu

from y to y. There are other paths as well, including the five trivial paths.
Exercise 3.3.2.3. How many paths are there in the following graph?

1
‚

f // 2‚
g // 3‚

♦

Exercise 3.3.2.4. Let G be a graph and consider the set PathG of paths in G. Suppose
someone claimed that there is a monoid structure on the set PathG, where the multipli-
cation formula is given by concatenation of paths. Are they correct? Why or why not?
Hint: what should be the identity element? ♦

3.3.3 Graph homomorphisms
A graph pV,A, src, tgtq involves two sets and two functions. For two graphs to be com-
parable, their two sets and their two functions should be appropriately comparable.

Definition 3.3.3.1. Let G “ pV,A, src, tgtq and G1 “ pV 1, A1, src1, tgt1q be graphs. A
graph homomorphism f from G to G1, denoted f : G Ñ G1, consists of two functions
f0 : V Ñ V 1 and f1 : AÑ A1 such that the two diagrams below commute:

A
f1 //

src

��

A1

src1

��
V

f0

// V 1

A
f1 //

tgt

��

A1

tgt1

��
V

f0

// V 1

(3.6)

Remark 3.3.3.2. The above conditions (3.6) may look abstruse at first, but they encode
a very important idea, roughly stated “arrows are bound to their vertices”. Under a map
of graphs G Ñ G1 , one cannot flippantly send an arrow of G any old arrow of G1: it
must still connect the vertices it connected before. Below is an example of a mapping
that does not respect this condition: a connects 1 and 2 before, but not after:

1
‚

a // 2‚
1ÞÑ11,2ÞÑ21,aÞÑa1 // 11

‚
21
‚

a1 // 3
1

‚

The commutativity of the diagrams in (3.6) is exactly what is needed to ensure that
arrows are handled in the expected way by a proposed graph homomorphism.

3.3. GRAPHS 91

Example 3.3.3.3 (Graph homomorphism). LetG “ pV,A, src, tgtq andG1 “ pV 1, A1, src1, tgt1q
be the graphs drawn to the left and right (respectively) below:

1
‚

a //

d

��

c

��

2
‚

b // 3‚

4
‚

5
‚

e // 6‚

1 ÞÑ 11, 2 ÞÑ 21,
3 ÞÑ 11, 4 ÞÑ 41,
5 ÞÑ 51, 6 ÞÑ 51 //

11
‚

w //

y
��

21
‚

x
oo

41
‚

51
‚

z��
(3.7)

The colors indicate our choice of function f0 : V Ñ V 1. Given that choice, condition (3.6)
imposes in this case that there is a unique choice of graph homomorphism f : GÑ G1.
Exercise 3.3.3.4.

a.) Where are a, b, c, d, e sent under f1 : AÑ A1 in Diagram (3.7)?

b.) Choose a couple elements of A and check that they behave as specified by Diagram
(3.6).

♦

Exercise 3.3.3.5. Let G be a graph, let n P N be a natural number, and let rns be the
chain graph of length n, as in Example 3.3.1.8. Is a path of length n in G the same thing
as a graph homomorphism rns Ñ G, or are there subtle differences? More precisely, is
there always an isomorphism between the set of graph homomorphisms rns Ñ G and the
set PathpnqG of length-n paths in G? ♦

Exercise 3.3.3.6. Given a morphism of graphs f : G Ñ G1, there an induced function
Pathpfq : PathpGq Ñ PathpG1q.

a.) Is it the case that for every n P N, the function Pathpfq carries PathpnqpGq to
PathpnqpG1q, or can path lengths change in this process?

b.) Suppose that f0 and f1 are injective (meaning no two distinct vertices in G are sent
to the same vertex (respectively for arrows) under f). Does this imply that Pathpfq
is also injective (meaning no two distinct paths are sent to the same path under f)?

c.) Suppose that f0 and f1 are surjective (meaning every vertex in G1 and every arrow
in G1 is in the image of f). Does this imply that Pathpfq is also surjective? Hint: at
least one of the answers to these three questions is “no”.

♦

Exercise 3.3.3.7. Given a graph pV,A, src, tgtq, let i : AÑ V ˆV be function guaranteed
by the universal property for products, as applied to src, tgt : A Ñ V . One might hope
to summarize Condition (3.6) for graph homomorphisms by the commutativity of the
single square

A
f1 //

i

��

A1

i1

��
V ˆ V

f0ˆf0

// V 1 ˆ V 1.

(3.8)

Is the commutativity of the diagram in (3.8) indeed equivalent to the commutativity of
the diagrams in (3.6)? ♦

92 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

3.3.3.8 Binary relations and graphs

Definition 3.3.3.9. Let X be a set. A binary relation on X is a subset R Ď X ˆX.

If X “ N is the set of integers, then the usual ď defines a relation on X: given
pm,nq P N ˆ N, we put pm,nq P R iff m ď n. As a table it might be written as to the
left

m ď n

m n
0 0
0 1
1 1
0 2
1 2
2 2
0 3
...

...

n “ 5m
m n
0 0
1 5
2 10
3 15
4 20
5 25
6 30
...

...

|n´m| ď 1
m n
0 0
0 1
1 0
1 1
1 2
2 1
2 2
...

...

(3.9)

The middle table is the relation tpm,nq P Nˆ N | n “ 5mu Ď Nˆ N and the right-hand
table is the relation tpm,nq P Nˆ N | |n´m| ď 1u Ď Nˆ N.

Exercise 3.3.3.10. A relation on R is a subset of RˆR, and one can indicate such a subset
of the plane by shading. Choose an error bound ε ą 0 and draw the relation one might
refer to as “ε-approximation”. To say it another way, draw the relation “x is within ε of
y”. ♦

Exercise 3.3.3.11 (Binary relations to graphs). a.) If R Ď SˆS is a binary relation, find
a natural way to make a graph out of it, having vertices S.

b.) What is the set A of arrows?

c.) What are the source and target functions src, tgt : AÑ S?

d.) Take the left-hand table in (3.9) and consider its first 7 rows (i.e. forget the
...). Draw

the corresponding graph (do you see a tetrahedron?).

e.) Do the same for the right-hand table.
♦

Exercise 3.3.3.12 (Graphs to binary relations).

a.) If pV,A, src, tgtq is a graph, find a natural way to make a binary relation R Ď V ˆV
out of it.

b.) Take the left-hand graphG from (3.7) and write out the corresponding binary relation
in table form.

♦

Exercise 3.3.3.13 (Going around the loops). a.) Given a binary relation R Ď SˆS, you
know from Exercise 3.3.3.11 how to construct a graph out of it, and from Exercise
3.3.3.12 how to make a new binary relation out of that. How does the resulting
relation compare with the original?

3.4. ORDERS 93

b.) Given a graph pV,A, src, tgtq, you know from Exercise 3.3.3.12 how to make a new
binary relation out of it, and from Exercise 3.3.3.11 how to construct a new graph
out of that. How does the resulting graph compare with the original?

♦

3.4 Orders
People usually think of certain sets as though they just are ordered, e.g. that an order is
ordained by God. For example the natural numbers just are ordered. The letters in the
alphabet just are ordered. But in fact we put orders on sets, and some are simply more
commonly used in culture. One could order the letters in the alphabet by frequency of
use and e would come before a. Given different purposes, we can put different orders
on the same set. For example in Exercise 4.5.1.4 we will give a different ordering on the
natural numbers that is useful in elementary number theory.

In science, we might order the set of materials in two different ways. In the first, we
consider material A to be “before” material B if A is an ingredient or part of B, so water
would be before concrete. But we could also order materials based on how electrically
conductive they are, whereby concrete would be before water. This section is about
different kinds of orders.

3.4.1 Definitions of preorder, partial order, linear order

Definition 3.4.1.1. Let S be a set and R Ď S ˆ S a binary relation on S; if ps, s1q P R
we will write s ď s1. Then we say that R is a preorder if, for all s, s1, s2 P S we have

Reflexivity: s ď s, and

Transitivity: if s ď s1 and s1 ď s2, then s ď s2.

We say that R is a partial order if it is a preorder and, in addition, for all s, s1 P S we
have

Antisymmetry: If s ď s1 and s1 ď s, then s “ s1.

We say that R is a linear order if it is a partial order and, in addition, for all s, s1 P S
we have

Comparability: Either s ď s1 or s1 ď s.

We denote such a preorder (or partial order or linear order) by pS,ďq.

Exercise 3.4.1.2.

a.) Decide whether the table to the left in Display (3.9) constitutes a linear order.

b.) Show that neither of the other tables are even preorders.

♦

94 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

Example 3.4.1.3 (Partial order not linear order). We will draw an olog for playing cards.

a dia-
mond

is

""

a heart

is

||

a club

is
##

a spade

is
{{

a red
card

is

))

a black
card

is

uu
a 4 of di-
amonds

is
��

is

OO

a card
a black
queen

is
��

is
cc

a 4
is //

a num-
bered
card

is
<<

a face
card

is
aa

a queenisoo

(3.10)

We can put a binary relation on the set of boxes here by saying A ď B if there is a
path A Ñ B. One can see immediately that this is a preorder because length=0 paths
give reflexivity and concatenation of paths gives transitivity. To see that it is a partial
order we only note that there are no loops. But this partial order is not a linear order
because there is no path (in either direction) between, e.g., pa 4 of diamondsq and pa
black queenq, so it violates the comparability condition.
Remark 3.4.1.4. Note that olog (3.10) in Example 3.4.1.3 is a good olog in the sense that
given any collection of cards (e.g. choose 45 cards at random from each of 7 decks and
throw them in a pile), they can be classified according to the boxes of (3.10) such that
every arrow indeed constitutes a function (which happens to be injective). For example
the arrow pa heartq is

ÝÝÝÑ pa red cardq is a function from the set of chosen hearts to the
set of chosen red cards.
Example 3.4.1.5 (Preorder not partial order). Every equivalence relation is a preorder
but rarely are they partial orders. For example if S “ t1, 2u and we put R “ SˆS, then
this is an equivalence relation. It is a preorder but not a partial order (because 1 ď 2
and 2 ď 1, but 1 ‰ 2, so antisymmetry fails).
Application 3.4.1.6. Classically, we think of time as linearly ordered. A nice model is
pR,ďq, the usual linear order on the set of real numbers. But according to the theory
of relativity, there is not actually a single order to the events in the universe. Different
observers correctly observe different orders on the set of events, and so in some sense on
time itself.

♦♦

Example 3.4.1.7 (Finite linear orders). Let n P N be a natural number. Define a linear
order on the set t0, 1, 2, . . . , nu in the standard way. Pictorially,

rns :“ 0
‚ // 1‚ // 2‚ // ¨ ¨ ¨ // n‚

Every finite linear order, i.e. linear order on a finite set, is of the above form. That
is, though the labels might change, the picture would be the same. We can make this
precise when we have a notion of morphism of orders (see Definition 3.4.4.1)

http://en.wikipedia.org/wiki/Relativity_of_simultaneity
http://en.wikipedia.org/wiki/Relativity_of_simultaneity

3.4. ORDERS 95

Exercise 3.4.1.8. Let S “ t1, 2, 3, 4u.

a.) Find a preorder R Ď S ˆS such that the set R is as small as possible. Is it a partial
order? Is it a linear order?

b.) Find a preorder R1 Ď SˆS such that the set R1 is as large as possible. Is it a partial
order? Is it a linear order?

♦

Exercise 3.4.1.9.

a.) List all the preorder relations possible on the set t1, 2u.

b.) For any n P N, how many linear orders exist on the set t1, 2, 3, . . . , nu.

c.) Does your formula work when n “ 0?

♦

Remark 3.4.1.10. We can draw any preorder pS,ďq as a graph with vertices S and with
an arrow aÑ b if a ď b. These are precisely the graphs with the following two properties
for any vertices a, b P S:

1. there is at most one arrow aÑ b, and

2. if there is a path from a to b then there is an arrow aÑ b.

If pS,ďq is a partial order then the associated graph has an additional “no loops” prop-
erty,

3. if n P N is an integer with n ě 2 then there are no paths of length n that start
at a and end at a.

If pS,ďq is a linear order then there is an additional “comparability” property,

4. for any two vertices a, b there is an arrow aÑ b or an arrow bÑ a.

Given a graph G, we can create a binary relation ď on its set S of vertices as follows.
Say a ď b if there is a path in G from a to b. This relation will be reflexive and transitive,
so it is a preorder. If the graph satisfies Property 3 then the preorder will be a partial
order, and if the graph also satisfies Property 4 then the partial order will be a linear
order. Thus graphs give us a nice way to visualize orders.

Slogan 3.4.1.11.

“ A graph generates a preorder: v ď w if there is a path v Ñ w. This is a
great way to picture a preorder. ”

Exercise 3.4.1.12. Let G “ pV,A, src, tgtq be the graph below.

a
‚ // b‚

 c
‚__

// d‚

e
‚

f
‚oo // g‚

BB

In the corresponding pre-order which of the following are true:

96 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

a.) a ď b?

b.) a ď c?

c.) c ď b?

d.) b “ c?

e.) e ď f?

f.) f ď d?

♦

Exercise 3.4.1.13.

a.) Let S “ t1, 2u. The subsets of S form a partial order; draw the associated graph.

b.) Repeat this for Q “ H, R “ t1u, and T “ t1, 2, 3u.

c.) Do you see n-dimensional cubes?

♦

Definition 3.4.1.14. Let pS,ďq be a preorder. A clique is a subset S1 Ď S such that
for each a, b P S1 one has a ď b.

Exercise 3.4.1.15. True or false: a partial order is a preorder that has no cliques. (If
false, is there a “nearby” true statement?) ♦

Example 3.4.1.16. Let X be a set and R Ď X ˆ X a relation. For elements x, y P X
we will say there is an R-path from x to y if there exists a natural number n P N and
elements x0, x1, . . . , xn such that

1. x0 “ x,

2. xn “ y, and

3. for all i P N, if 0 ď i ď n´ 1 then pxi, xi`1q P R.

Let R denote the relation where px, yq P R if there exists an R-path from x to y. We call
R the preorder generated by R. We note some facts about R.

Containment. If px, yq P R then px, yq P R. That is R Ď R.

Reflexivity . For all x P X we have px, xq P R.

Transitivity. For all x, y, z P X, if px, yq P R and py, zq P R then px, zq P R.

To check the containment claim, just use n “ 1 so x0 “ x and xn “ y. To check the
reflexivity claim, use n “ 0 so x0 “ x “ y and condition 3 is vacuously satisfied. To check
transitivitiy, suppose given R-paths x “ x0, x1, . . . , xn “ y and y “ y0, y1, . . . , yp “ z;
then x “ x0, x1, . . . xn, y1, . . . , yp “ z will be an R-path from x to z.

The point is that we can turn any relation into a preorder in a canonical way. Here
is a concrete case of the above idea.

Let X “ ta, b, c, du and suppose given the relation tpa, bq, pb, cq, pb, dq, pd, cq, pc, cqu.
This is neither reflexive nor transitive, so it’s not a preorder. To make it a preorder
we follow the above prescription. Starting with R-paths of length n “ 0 we put
tpa, aq, pb, bq, pc, cq, pd, dqu into R. The R-paths of length 1 add our original elements,

3.4. ORDERS 97

tpa, bq, pb, cq, pb, dq, pd, cq, pc, cqu. We don’t mind redundancy (e.g. pc, cq), but from now
on in this example we will only write down the new elements. The R-paths of length 2
add tpa, cq, pa, dqu to R. One can check that R-paths of length 3 and above do not add
anything new to R, so we are done. The relation

R “ tpa, aq, pb, bq, pc, cq, pd, dq, pa, bq, pb, cq, pb, dq, pd, cq, pa, cq, pa, dqu

is reflexive and transitive, hence a preorder.
Exercise 3.4.1.17. Let X “ ta, b, c, d, e, fu and let R “ tpa, bq, pb, cq, pb, dq, pd, eq, pf, aqu.

a.) What is the preorder R generated by R?

b.) Is it a partial order?

♦

Exercise 3.4.1.18. Let X be the set of people and let R Ď X ˆX be the relation with
px, yq P R if x is the child of y. Describe the preorder generated by R. ♦

3.4.2 Meets and joins
Let X be any set. Recall from Definition 2.7.4.9 that the powerset of X, denoted PpXq is
the set of subsets of X. There is a natural order on PpXq given by the subset relationship,
as exemplified in Exercise 3.4.1.13. Given two elements a, b P PpXq we can consider them
as subsets of X and take their intersection as an element of PpXq which we denote a^ b.
We can also consider them as subsets of X and take their union as an element of PpXq
which we denote a _ b. The intersection and union operations are generalized in the
following definition.

Definition 3.4.2.1. Let pS,ďq be a preorder and let s, t P S be elements. A meet of s
and t is an element w P S satisfying the following universal property:

• w ď s and w ď t and,

• for any x P S, if x ď s and x ď t then x ď w.

If w is a meet of s and t, we write w – s^ t.
A join of s and t is an element w P S satisfying the following universal property:

• s ď w and t ď w and,

• for any x P S, if s ď x and t ď x then w ď x.

If w is a join of s and t, we write w – s_ t.

That is, the meet of s and t is the biggest thing smaller than both, i.e. a greatest
lower bound, and the join of s and t is the smallest thing bigger than both, i.e. a least
upper bound. Note that the meet of s and t might be s or t itself. Note that s and t may
have more than one meet (or more than one join). However, any two meets of s and t
must be in the same clique, by the universal property (and the same for joins).
Exercise 3.4.2.2. Consider the partial order from Example 3.4.1.3.

a.) What is the join of pa diamondq and pa heartq?

b.) What is the meet of pa black cardq and pa queenq?

98 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

c.) What is the meet of pa diamondq and pa cardq?
♦

Not every two elements in a preorder need have a meet, nor need they have a join.
Exercise 3.4.2.3.
a.) If possible, find two elements in the partial order from Example 3.4.1.3 that do not

have a meet. 8

b.) If possible, find two elements that do not have a join (in that preorder).
♦

Exercise 3.4.2.4. As mentioned in the introduction to this section, the power set S :“
PpXq of any set X naturally has the structure of a partial order. Its elements s P S
correspond to subsets s Ď X, and we put s ď t if and only if s Ď t as subsets of X. The
meet of two elements is their intersection as subsets of X, s^ t “ sX t, and the join of
two elements is their union as subsets of X, s_ t “ sY t.
a.) Is it possible to put a monoid structure on the set S in which the multiplication

formula is given by meets? If so, what would the identity element be?

b.) Is it possible to put a monoid structure on the set S in which the multiplication
formula is given by joins? If so, what would the identity element be?

♦

Example 3.4.2.5 (Trees). A tree, i.e. a system of nodes and branches, all of which emanate
from a single node called the root, is a partial order, but generally not a linear order. A
tree pT,ďq can either be oriented toward the root (so the root is the largest element) or
away from the root (so the root is the smallest element); let’s only consider the latter.

Below is a tree, pictured as a graph. The root is labeled e.
a
‚

b
‚ // c‚

;;

//

##

d
‚

e
‚

;;

##

f
‚

g
‚ //

##

h
‚

i
‚

(3.11)

In a tree, every pair of elements s, t P T has a meet s ^ t (their closest mutual
ancestor). On the other hand if s and t have a join c “ s_ t then either c “ s or c “ t.
Exercise 3.4.2.6. Consider the tree drawn in (3.11).
a.) What is the meet i^ h?

b.) What is the meet h^ b?

c.) What is the join b_ a?

d.) What is the join b_ g?
♦

8Use the displayed preorder, not any kind of “completion of what’s there”.

3.4. ORDERS 99

3.4.3 Opposite order
Definition 3.4.3.1. Let S :“ pS,ďq be a preorder. The opposite preorder, denoted Sop

is the preorder pS,ďopq having the same set of elements but where s ďop s1 iff s1 ď s.

Example 3.4.3.2. Recall the preorder N :“ pN, dividesq from Exercise 4.5.1.4. Then
N op is the set of natural numbers but where m ď n iff m is a multiple of n. So 6 ď 2
and 6 ď 3.
Exercise 3.4.3.3. Suppose that S :“ pS,ďq is a preorder.

a.) If S is a partial order, is Sop also a partial order?

b.) If S is a linear order, is Sop a linear order?

♦

Exercise 3.4.3.4. Suppose that S :“ pS,ďq is a preorder, and that s1, s2 P S have join t
in S. The preorder Sop has the same elements as S. Is t the join of s1 and s2 in Sop, or
is it their meet, or is it not necessarily their meet nor their join? ♦

3.4.4 Morphism of orders
An order pS,ďq, be it a preorder, a partial order, or a linear order, involves a set and a
binary relations. For two orders to be comparable, their sets and their relations should
be appropriately comparable.

Definition 3.4.4.1. Let S :“ pS,ďq and S 1 :“ pS1,ď1q be preorders (respectively partial
orders or linear orders). A morphism of preorders (resp. of partial orders or of linear
orders) f from S to S 1, denoted f : S Ñ S 1, is a function f : S Ñ S1 such that, for every
pair of elements s1, s2 P S, if s1 ď s2 then fps1q ď

1 fps2q.

Example 3.4.4.2. Let X and Y be sets, let f : X Ñ Y be a function. Then for every
subset X 1 Ď X, its image fpX 1q Ď Y is a subset (see Section 2.1.2). Thus we have a
function F : PpXq Ñ PpY q, given by taking images. This is a morphism of partial orders
pPpXq,Ďq Ñ pPpY q,Ďq. Indeed, if a Ď b in PpXq then fpaq Ď fpbq in PpY q.
Application 3.4.4.3. It’s often said that “a team is only as strong as its weakest member”.
Is this true for materials? The hypothesis that a material is only as strong as its weakest
constituent can be understood as follows.

Recall from the introduction to this section (see 3.4, page 93) that we can put several
different orders on the set M of materials. One example there was the order given by
constituency (m ďC m1 if m is an ingredient or constituent of m1). Another order is
given by strength: m ďS m

1 if m1 is stronger than m (in some fixed setting).
Is it true that if material m is a constituent of material m1 then the strength of

m1 is less than or equal to the strength of m? This is the substance of our quote
above. Mathematically the question would be posed, “is there a morphism of preorders
pM,ďCq ÝÑ pM,ďop

S q?”
♦♦

Exercise 3.4.4.4. Let X and Y be sets, let f : X Ñ Y be a function. Then for every
subset Y 1 Ď Y , its preimage f´1pY 1q Ď X is a subset (see Definition 2.5.1.12). Thus we
have a function F : PpY q Ñ PpXq, given by taking preimages. Is it a morphism of partial
orders? ♦

100 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

Example 3.4.4.5. Let S be a set. The smallest preorder structure that can be put on
S is to say a ď b iff a “ b. This is indeed reflexive and transitive, and it is called the
discrete preorder on S.

The largest preorder structure that can be put on S is to say a ď b for all a, b P S.
This again is reflexive and transitive, and it is called the indiscrete preorder on S.
Exercise 3.4.4.6. Let S be a set and let pT,ďT q be a preorder. Let ďD be the discrete
preorder on S. Given a morphism of preorders pS,ďDq Ñ pT,ďT q we get a function
S Ñ T .

a.) Which functions S Ñ T arise in this way?

b.) Given a morphism of preorders pT,ďT q Ñ pS,ďDq, we get a function T Ñ S. In
terms of ďT , which functions T Ñ S arise in this way?

♦

Exercise 3.4.4.7. Let S be a set and let pT,ďT q be a preorder. Let ďI be the indiscrete
preorder on S. Given a morphism of preorders pS,ďIq Ñ pT,ďT q we get a function
S Ñ T .

a.) In terms of ďT , which functions S Ñ T arise in this way?

b.) Given a morphism of preorders pT,ďT q Ñ pS,ďIq, we get a function T Ñ S. In
terms of ďT , which functions T Ñ S arise in this way?

♦

3.4.5 Other applications
3.4.5.1 Biological classification

Biological classification is a method for dividing the set of organisms into distinct classes,
called taxa. In fact, it turns out that such a classification, say a phylogenetic tree, can
be understood as a partial order C on the set of taxa. The typical ranking of these taxa,
including kingdom, phylum, etc., can be understood as morphism of orders f : C Ñ rns,
for some n P N.

For example we may have a tree (see Example 3.4.2.5) that looks like this

Archaea
‚ // Pyrodicticum

‚

Spirochetes
‚

Life
‚ //

��

??

Bacteria
‚ //

55

Aquifex
‚

Fungi
‚

Eukaryota
‚ //

55

Animals
‚ // HomoSapien

‚

We also have a linear order that looks like this:

Life
‚ // Domain

‚ // Kingdom
‚ // Phylum

‚ // ¨ ¨ ¨ // Genus
‚ // Species

‚

http://en.wikipedia.org/wiki/Biological_classification

3.4. ORDERS 101

and the ranking system that puts Eukaryota at Domain and Hopo Sapien at Species is
an order-preserving function from the dots upstairs to the dots downstairs; that is, it is
a morphism of preorders.
Exercise 3.4.5.2. Since the phylogenetic tree is a tree, it has all meets.

a.) Determine the meet of dogs and humans.

b.) If we did not require the phylogenetic partial order to be a tree, what would it mean
if two taxa (nodes in the phylogenetic partial order), say a and b, had join c with
c ‰ a and c ‰ b?

♦

Exercise 3.4.5.3.

a.) In your favorite scientific realm, are there any interesting classification systems that
are actually orders?

b.) Choose one; what would meets and joins mean in that setting?

♦

3.4.5.4 Security

Security, say of sensitive information, is based on two things: a security clearance and
“need to know.” The former, security clearance might have levels like “confidential”,
“secret”, “top secret”. But maybe we can throw in “president” and some others too, like
“plebe”.
Exercise 3.4.5.5. Does it appear that security clearance is a preorder, a partial order, or
a linear order? ♦

Need-to-know is another classification of people. For each bit of information, we do
not necessarily want everyone to know about it, even everyone of the specified clearance.
It is only disseminated to those that need to know.
Exercise 3.4.5.6. Let P be the set of all people and let I be the set of all pieces of
information known by the government. For each subset I Ď I, let KpIq Ď P be the set
of people that need to know every piece of information in I. Let S “ tKpIq | I Ď Iu be
the set of all “need-to-know groups”, with the subset relation denoted ď.

a.) Is pS,ďq a preorder? If not, find a nearby preorder.

b.) If I1 Ď I2 do we always have KpI1q Ď KpI2q or KpI2q Ď KpI1q or possibly neither?

c.) Should the preorder pS,ďq have all meets?

d.) Should pS,ďq have all joins?

♦

3.4.5.7 Spaces, e.g. geography

Consider closed curves that can be drawn in the plane R2, e.g. circles, ellipses, and
kidney-bean shaped curves. The interiors of these closed curves (not including the bound-
ary itself) are called basic open sets in R2. The good thing about such an interior U is
that any point p P U is not on the boundary, so no matter how close p is to the boundary

102 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

of U , there will always be a tiny basic open set surrounding p and completely contained
in U . In fact, the union of any collection of basic open sets still has this property. An
open set in R2 is any subset U Ď R2 that can be formed as the union of a collection of
basic open sets.
Example 3.4.5.8. Let U “ tpx, yq P R2 | x ą 0u. To see that U is open, define the
following sets: for any a, b P R, let Spa, bq be the square parallel to the axes, with side
length 1, where the upper left corner is pa, bq. Let S1pa, bq be the interior of Spa, bq. Then
each S1pa, bq is open, and U is the union of S1pa, bq over the collection of all a ą 0 and
all b,

U “
ď

a, b P R,
a ą 0

S1pa, bq.

The idea of open sets extends to spaces beyond R2. For example, on the earth one
could define a basic open set to be the interior of any region one can “draw a circle
around” (with a metaphorical pen), and define open sets to be unions of basic open sets.
Exercise 3.4.5.9. Let S be the set of open subsets on earth, as defined in the above
paragraph.

a.) If ď is the subset relation, is pS,ďq a preorder or a partial order?

b.) Does it have meets, does it have joins?

♦

Exercise 3.4.5.10. Let S be the set of open subsets of earth as defined above. To each
open subset of earth suppose we know the range of recorded temperature throughout s
(i.e. the low and high throughout the region). Thus to each element s P S we assign an
interval T psq :“ tx P R | a ď x ď bu. If we order the set V of intervals of R by the subset
relation, it gives a partial order on V .

a.) Does our assignment T : S Ñ V amount to a morphism of orders?

b.) Does it preserve meets or joins? (Hint: it doesn’t preserve both.)

♦

Exercise 3.4.5.11.

a.) Can you think of a space relevant to your favorite area of science for which it makes
sense to assign an interval of real numbers to each open set somehow, analogously to
Exercise 3.4.5.10? For example for a sample of some material under stress, perhaps
the strain on each open set is somehow an interval?

b.) Repeat the questions from Exercise 3.4.5.10.

♦

3.5 Databases: schemas and instances
The first three sections of this chapter were about classical objects from mathematics.
The present section is about databases, which are classical objects from computer science.
These are truly “categories and functors, without admitting it” (see Theorem 4.4.2.3).

3.5. DATABASES: SCHEMAS AND INSTANCES 103

3.5.1 What are databases?

Data, in particular the set of observations made during experiment, plays 9 a primary
role in science of any kind. To be useful data must be organized, often in a row-and-
column display called a table. Columns existing in different tables can refer to the same
data.

A database is a collection of tables, each table T of which consists of a set of columns
and a set of rows. We roughly explain the role of tables, columns, and rows as follows.
The existence of table T suggests the existence of a fixed methodology for observing
objects or events of a certain type. Each column c in T prescribes a single kind or
method of observation, so that the datum inhabiting any cell in column c refers to an
observation of that kind. Each row r in T has a fixed sourcing event or object, which
can be observed using the methods prescribed by the columns. The cell pr, cq refers to
the observation of kind c made on event r. All of the rows in T should refer to uniquely
identifiable objects or events of a single type, and the name of the table T should refer
to that type.

Example 3.5.1.1. When graphene is strained (lengthened by a factor of x ě 1), it becomes
stressed (carries a force in the direction of the lengthening). The following is a made-up
set of data.

Graphene sample
ID Source Stress Strain
A118-1 C Smkt 0 0
A118-2 C Smkt 0.02 20
A118-3 C Smkt 0.05 40
A118-4 AC 0.04 37
A118-5 AC 0.1 80
A118-6 C Plat 0.1 82

Supplier
ID Full name Phone
C Smkt Carbon Supermarket (541)781-6611
AC Advanced Chemical (410) 693-0818
C Plat Carbon Platform (510) 719-2857
McD McDonard’s Burgers (617) 244-4400
APP Acme Pen and Paper (617) 823-5603

(3.12)

In the first table, titled “Graphene sample”, the rows refer to graphene samples, and
the table is so named. Each graphene sample can be observed according to the source
supplier from which it came, the strain that it was subjected to, and the stress that
it carried. These observations are the columns. In the second table, the rows refer to
suppliers of various things, and the table is so named. Each supplier can be observed
according to its full name and its phone number; these are the columns.

In the left-hand table it appears either that each graphene sample was used only
once, or that the person recording the data did not keep track of which samples were
reused. If such details become important later, the lab may want to change the layout
of the first table by adding on the appropriate column. This can be accomplished using
morphisms of schemas, which will be discussed in Section 4.4.1.

9The word data is generally considered to be the plural form of the word datum. However, individual
datum elements are only useful when they are organized into structures (e.g. if one were to shuffle the
cells in a spreadsheet, most would consider the data to be destroyed). It is the whole organized structure
that really houses the information; the data must be in formation in order to be useful. Thus I will use
the word data as a collective noun (akin to the word “sand”); it bridges the divide between the individual
datum elements (akin to the grains of sand) and the data set (akin to a sand pile). In particular, I will
often use the word data as a singular noun.

104 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

3.5.1.2 Primary keys, foreign keys, and data columns

There is a bit more structure in the above tables (Example 3.12) then may first meet
the eye. Each table has a primary ID column, found on the left, as well as some data
columns and some foreign key columns. The primary key column is tasked with uniquely
identifying different rows. Each data column houses elementary data of a certain sort.
Perhaps most interesting from a structural point of view are the foreign key columns,
because they link one table to another, creating a connection pattern between tables.
Each foreign key column houses data that needs to be further unpacked. It thus refers us
to another foreign table, in particular the primary ID column of that table. In Example
3.12 the Source column was a foreign key to the Supplier table.

Here is another example, lifted from [Sp2].
Example 3.5.1.3. Consider the bookkeeping necessary to run a department store. We
keep track of a set of employees and a set of departments. For each employee e, we keep
track of

E.1 the first name of e, which is a FirstNameString,

E.2 the last name of e, which is a LastNameString,

E.3 the manager of e, which is an Employee, and

E.4 the department that e works in, which is a Department.

For each department d, we keep track of

D.1 the name of d, which is a DepartmentNameString, and

D.2 the secretary of d, which is an Employee.

Above we can suppose that E.1, E.2, and D.1 are data columns (referring to names
of various sorts), and E.3, E.4, and D.2 are foreign key columns (referring to managers,
secretaries, etc.).

Display (3.13) shows how such a database might look at a particular moment in time.

Employee
ID first last manager worksIn
101 David Hilbert 103 q10
102 Bertrand Russell 102 x02
103 Emmy Noether 103 q10

Department
ID name secretary
q10 Sales 101
x02 Production 102

(3.13)

3.5.1.4 Business rules

Looking at the tables from Example 3.5.1.3, one may notice a few patterns. First, every
employee works in the same department as his or manager. Second, every department’s
secretary works in that department. Perhaps the business counts on these rules for the
way it structures itself. In that case the database should enforce those rules, i.e. it
should check that whenever the data is updated, it conforms to the rules:

Rule 1 For every employee e, the manager of e works in the same department
that e works in.

3.5. DATABASES: SCHEMAS AND INSTANCES 105

Rule 2 For every department d, the secretary of d works in department d.

(3.14)

Together, the statements E.1, E.2, E.3, E.4, D.1, and D.2 from Example 3.5.1.3 and
Rule 1 and Rule 2, constitute what we will call the schema of the database. We will
formalize this idea in Section 3.5.2.

3.5.1.5 Data columns as foreign keys

To make everything consistent, we could even say that data columns are specific kinds of
foreign keys. That is, each data column constitutes a foreign key to some non-branching
leaf table, which has no additional data.

Example 3.5.1.6. Consider again Example 3.5.1.3. Note that first names and last names
had a particular type, which we all but ignored above. We could cease to ignore them
by adding three tables, as follows.

FirstNameString
ID
Alan
Alice
Bertrand
Carl
David
Emmy

...

LastNameString
ID
Arden
Hilbert
Jones
Noether
Russell

...

DepartmentNameString
ID
Marketing
Production
Sales

...

(3.15)

In combination, Displays (3.13) and (3.15) form a collection of tables with the prop-
erty that every column is either a primary key or a foreign key. The notion of data
column is now subsumed under the notion of foreign key column. Everything is either a
primary key (one per table, labeled ID) or a foreign key column (everything else).

3.5.2 Schemas

The above section may all seem intuitive or reasonable in some ways, but also a bit
difficult to fully grasp, perhaps. It would be nice to summarize what is happening in a
picture. Such a picture, which will basically be a graph, should capture the conceptual
layout to which the data conforms, without yet being concerned with the individual data
that may populate the tables in this instant. We proceed at first by example, giving the
precise definition in Definition 3.5.2.6.

Example 3.5.2.1. In Examples 3.5.1.3 and 3.5.1.6, the conceptual layout for a department
store was given, and some example tables were shown. We were instructed to keep track
of employees, departments, and six types of data (E.1, E.2, E.3, E.4, D.1, and D.2), and
we were instructed to follow two rules (Rule 1, Rule 2). All of this is summarized in the

106 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

following picture:

C:“ Schema for tables (3.13) and (3.15) conforming to (3.14)

Employee manager worksIn » Employee worksIn
Department secretary worksIn » Department

Employee
‚

worksIn //

manager
��

first

~~

last

��

Department
‚

secretary
oo

name

��
FirstNameString

‚
LastNameString

‚
DepartmentNameString

‚

(3.16)

The five tables from (3.13) and (3.15) are seen as five vertices; this is also the number of
primary ID columns. The six foreign key columns from (3.13) and (3.15) are seen as six
arrows; each points from a table to a foreign table. The two rules from (3.14) are seen as
statements at the top of Display (3.16).We will explain path equivalences in Definition
3.5.2.3.
Exercise 3.5.2.2. Come up with a schema (consisting of dots and arrows) describing the
conceptual layout of information presented in Example 3.5.1.1. ♦

In order to define schemas, we must first define the notion of schematic equivalence
relation, which is to hold on the set of paths of a graph G (see Section 3.3.2). Such
an equivalence relation (in addition to being reflexive, symmetric, and transitive) has
two sorts of additional properties: equivalent paths must have the same source and
target, and the composition of equivalent paths with other equivalent paths must yield
equivalent paths. Formally we have Definition 3.5.2.3.

Definition 3.5.2.3.
Let G “ pV,A, src, tgtq be a graph, and let PathG denote the set of paths in G

(see Definition 3.3.2.1). A path equivalence declaration (or PED) is an expression of the
form p » q where p, q P PathG have the same source and target, srcppq “ srcpqq and
tgtppq “ tgtpqq.

A congruence on G is a relation » on PathG that has the following properties:

1. The relation » is an equivalence relation.

2. If p » q then srcppq “ srcpqq.

3. If p » q then tgtppq “ tgtpqq.

4. Suppose p, q : bÑ c are paths, and m : aÑ b is an arrow. If p » q then mp » mq.

5. Suppose p, q : aÑ b are paths, and n : bÑ c is an arrow. If p » q then pn » qn.

Any set of path equivalence declarations (PEDs) generates a congruence. We tend
to elide the difference between a congruence and the set of PEDs that generates it.

3.5. DATABASES: SCHEMAS AND INSTANCES 107

Exercise 3.5.2.4. Consider the graph shown in (3.16), and the two declarations shown at
the top. They generate a congruence.

a.) Is it true that the following PED is an element of this congruence?

Employee manager manager worksIn ?
» Employee worksIn

b.) What about this one?

Employee worksIn secretary ?
» Employee

c.) What about this one?

Department secretary manager worksIn name ?
» Department name

♦

Lemma 3.5.2.5. Suppose that G is a graph and » is a congruence on G. Suppose
p » q : aÑ b and r » s : bÑ c. Then pr » qs.

Proof. The picture to have in mind is this:

‚ // ¨ ¨ ¨ // ‚

��

‚ // ¨ ¨ ¨ // ‚

��a
‚ »

AA

��

p
%%

q

99
b
‚ »

AA

��

r
%%

s

99
c
‚

‚ // ¨ ¨ ¨ // ‚

AA

‚ // ¨ ¨ ¨ // ‚

AA

Applying condition (3) from Definition 3.5.2.3 to each arrow in path p, it follows by
induction that pr » ps. Applying condition (4) to each arrow in path s, it follows
similarly that ps » qs. Because » is an equivalence relation, it follows that pr » qs.

�

Definition 3.5.2.6. A database schema (or simply schema) C consists of a pair C :“
pG,»q where G is a graph and » is a congruence on G.

Example 3.5.2.7. The picture drawn in (3.16) has the makings of a schema. Pictured is
a graph with two PEDs; these generate a congruence, as discussed in Exercise 3.5.2.4.

A schema can be converted into a system of tables each with a primary key and some
number of foreign keys referring to other tables, as discussed in Section 3.5.1. Definition
3.5.2.6 gives a precise conceptual understanding of what a schema is, and the following
rules describe how to convert such a thing into a table layout.
Rules of good practice 3.5.2.8. Converting a schema C “ pG,»q into a table layout should
be done as follows:

(i) There should be a table for every vertex in G and if the vertex is named, the table
should have that name;

(ii) Each table should have a left-most column called ID, set apart from the other
columns by a double vertical line; and

108 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

(iii) To each arrow a in G having source vertex s :“ srcpaq and target vertex t :“ tgtpaq,
there should be a foreign key column a in table s, referring to table t; if the arrow
a is named, column a should have that name.

Example 3.5.2.9 (Discrete dynamical system). Consider the schema

Loop :“
s
‚

f
�� (3.17)

in which the congruence is trivial (i.e. generated by the empty set of PEDs.) This
schema is quite interesting. It encodes a set s and a function f : s Ñ s. Such a thing
is called a discrete dynamical system. One imagines s as the set of states and, for any
state x P s, a notion of “next state” fpxq P s. For example

s
ID f
A B
B C
C C
D B
E C
F G
G H
H G

...pictured...

A
‚ // B‚ // C‚ qq

D
‚

;;

E
‚

;;

F
‚ // G‚

((H
‚hh

(3.18)

Application 3.5.2.10. Imagine a quantum-time universe in which there are discrete time
steps. We model it as a discrete dynamical system, i.e. a table of the form (3.18). For
every possible state of the universe we include a row in the table. The state in the next
instant is recorded in the second column.

♦♦

Example 3.5.2.11 (Finite hierarchy). The schema Loop can also be used to encode hier-
archies, such as the manager relation from Examples 3.5.1.3 and 3.5.2.1,

E
‚

mgr
��

One problem with this, however, is if a schema has even one loop, then it can have in-
finitely many paths (corresponding, e.g. to an employees manager’s manager’s manager’s
... manager).

Sometimes we know that in a given company that process eventually ends, a famous
example being that at Ben and Jerry’s ice cream, there were only seven levels. In that
case we know that an employee’s 8th level manager is equal to his or her 7th level
manager. This can be encoded by the PED

E mgr mgr mgr mgr mgr mgr mgr mgr » E mgr mgr mgr mgr mgr mgr mgr

or more concisely, mgr8 “ mgr7.
Exercise 3.5.2.12. Is there any nontrivial PED on Loop that holds for the data in Example
3.5.2.9? If so, what is it and how many equivalence classes of paths in Loop are there
after you impose that relation? ♦

http://en.wikipedia.org/wiki/Chronon

3.5. DATABASES: SCHEMAS AND INSTANCES 109

Exercise 3.5.2.13. Let P be a chess-playing program. Given any position (including the
history of the game and choice of whose turn it is), P will make a move.

a.) Is this an example of a discrete dynamical system?

b.) How do the rules for ending the game in a win or draw play out in this model? (Look
up online how chess games end if you don’t know.)

♦

3.5.2.14 Ologging schemas

It should be clear that a database schema is nothing but an olog in disguise. The
difference is basically the readability requirements for ologs. There is an important new
addition in this section, namely that we can fill out an olog with data. Conversely, we
have seen that databases are not any harder to understand than ologs are.
Example 3.5.2.15. Consider the olog

a moon orbits
ÝÝÝÝÝÝÑ a planet (3.19)

We can document some instances of this relationship using the following tables:

orbits
a moon a planet

The Moon Earth
Phobos Mars
Deimos Mars

Ganymede Jupiter
Titan Saturn

(3.20)

Clearly, this table of instances can be updated as more moons are discovered by the
author (be it by telescope, conversation, or research).
Exercise 3.5.2.16. In fact, Example 3.5.2.15 did not follow Rules 3.5.2.8. Strictly follow-
ing those rules, copy over the data from (3.20) into tables that are in accordance with
schema (3.19). ♦

Exercise 3.5.2.17.

a.) Write down a schema, in terms of the boxes pa thing I ownq and pa placeq and one
additional arrow, that might help one remember where they decided to put “random”
things.

b.) What is a good label for the arrow?

c.) Fill in some rows of the corresponding set of tables for your own case.

♦

Exercise 3.5.2.18. Consider the olog

C

a child has //
F

a father
has as first
kk

has as tallest
tt

110 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

a.) What path equivalence declarations would be appropriate for this olog? You can use
f : F Ñ C, t : F Ñ C, and h : C Ñ F if you prefer.

b.) How many PEDs are in the congruence?

♦

3.5.3 Instances
Given a database schema pG,»q, an instance of it is just a bunch of tables whose data
conform to the specified layout. These can be seen throughout the previous section, most
explicitly in the relationship between schema (3.16) and tables (3.13) and (3.15), and
between schema (3.17) and table (3.18). Below is the mathematical definition.

Definition 3.5.3.1. Let C “ pG,»q where G “ pV,A, src, tgtq. An instance on C,
denoted pPK,FKq : C Ñ Set, is defined as follows: One announces some constituents
(A. primary ID part, B. foreign key part) and asserts that they conform to a law (1.
preservation of congruence). Specifically, one announces

A. a function PK: V Ñ Set; i.e. to each vertex v P V one provides a set PKpvq;10

and

B. for every arrow a P A with v “ srcpaq and w “ tgtpaq, a function FKpaq : PKpvq Ñ
PKpwq. 11

One asserts that the following law holds for any vertices v, w and paths p “ va1a2 . . . am
and q “ va11a

1
2 . . . a

1
n from v to w:

1. If p » q then for all x P PKpvq, we have

FKpamq ˝ ¨ ¨ ¨ ˝ FKpa2q ˝ FKpa1qpxq “ FKpa1nq ˝ ¨ ¨ ¨ ˝ FKpa12q ˝ FKpa11qpxq

in PKpwq.

Exercise 3.5.3.2. Consider the olog pictured below:

C :“

a self-email is // an email

is sent by
,,

is sent to
44
a person

Given x, a self-email, consider the following.
We know that x is a self-email, which is an email,
which is sent by a person that we’ll call P pxq.
We also know that x is a self-email, which is an
email, which is sent to a person that we’ll call Qpxq.
Fact: whenever x is a self-email, we will have P pxq “
Qpxq

10The elements of PKpvq will be listed as the rows of table v, or more precisely as the leftmost cells
of these rows.

11The arrow a will correspond to a column, and to each row r P PKpvq the pr, aq cell will contain the
datum FKpaqprq.

3.5. DATABASES: SCHEMAS AND INSTANCES 111

a self-email
ID is
SEm1207 Em1207
SEm1210 Em1210
SEm1211 Em1211

an email
ID is sent by is sent to
Em1206 Bob Sue
Em1207 Carl Carl
Em1208 Sue Martha
Em1209 Chris Bob
Em1210 Chris Chris
Em1211 Julia Julia
Em1212 Martha Chris

a person
ID
Bob
Carl
Chris
Julia
Martha
Sue

(3.21)

a.) What is the set PKppan emailqq?

b.) What is the set PKppa personqq?

c.) What is the function FKpis sent byq : PKppan emailqq Ñ PKppa personqq?

d.) Interpret the sentences at the bottom of C as the Englishification of a simple path
equivalence declaration. Is it satisfied by the instance (3.21); that is, does law 1.
from Definition 3.5.3.1 hold?

♦

Example 3.5.3.3 (Monoid action table). In Example 3.1.2.9, we saw how a monoid M
could be captured as an olog with only one object. As a database schema, this means
there is only one table. Every generator of M would be a column of the table. The
notion of database instance for such a schema is precisely the notion of action table from
Section 3.1.3. Note that a monoid can act on itself, in which case this action table is the
monoid’s multiplication table as in Example 3.1.3.2, but it can also act on any other set
as in Example 3.1.3.1. IfM acts on a set S, then the set of rows in the action table will
be S.
Exercise 3.5.3.4. Draw (as a graph) the schema for which Table 3.2 is an instance. ♦

Exercise 3.5.3.5. Suppose that M is a monoid and some instance of it is written out in
table form. It’s possible that M is a group. What evidence in an instance table for M
might suggest that M is a group? ♦

3.5.3.6 Paths through a database

Let C :“ pG,»q be a schema and let pPK,FKq : C Ñ Set be an instance on C. Then
for every arrow a : v Ñ w in G we get a function FKpaq : PKpvq Ñ PKpwq. Functions
can be composed, so in fact for every path through G we get a function. Namely, if
p “ v0a1, a2, . . . , an is a path from v0 to vn then the instance provides a function

FKppq :“ FKpanq ˝ ¨ ¨ ¨FKpa2q ˝ FKpa1q : PKpv0q Ñ PKpvnq,

which first made an appearance as part of Law 1 in Definition 3.5.3.1.
Example 3.5.3.7. Consider the department store schema from Example 3.5.2.1, and in
(3.16) the path rworksIn, secretary, lasts which points from Employee to LastNameString.
The instance will let us interpret this path as a function from the set of employees to
the set of last names; this could be a useful function to have around. The instance from
(3.13) would yield the following function

112 CHAPTER 3. CATEGORIES AND FUNCTORS, WITHOUT ADMITTING IT

Employee
ID Secr. name
101 Hilbert
102 Russell
103 Hilbert

Exercise 3.5.3.8. Consider the path p :“ rf, f s on the Loop schema from (3.17). Using the
instance from (3.18), where PKpsq “ tA,B,C,D,E, F,G,Hu, interpret p as a function
PKpsq Ñ PKpsq, and write this as a 2-column table, as above in Example 3.5.3.7. ♦

Exercise 3.5.3.9.

a.) Given an instance pPK,FKq on a schema C, and given a trivial path p (i.e. p has
length 0; it starts at some vertex but doesn’t go anywhere), what function does p
yield?

b.) What are the domain and codomain of p?

♦

MIT OpenCourseWare
http://ocw.mit.edu

18.S996�Category Theory for Scientist
Spring 2013

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

