Chapter 2

The category of sets

The theory of sets was invented as a foundation for all of mathematics. The notion of
sets and functions serves as a basis on which to build our intuition about categories in
general. In this chapter we will give examples of sets and functions and then move on
to discuss commutative diagrams. At this point we can introduce ologs which will allow
us to use the language of category theory to speak about real world concepts. Then we
will introduce limits and colimits, and their universal properties. All of this material is
basic set theory, but it can also be taken as an investigation of our first category, the
category of sets, which we call Set. We will end this chapter with some other interesting
constructions in Set that do not fit into the previous sections.

2.1 Sets and functions

2.1.1 Sets

In this course I'll assume you know what a set is. We can think of a set X as a collection
of things x € X, each of which is recognizable as being in X and such that for each pair
of named elements z,z’ € X we can tell if x = 2’ or not. L The set of pendulums is the
collection of things we agree to call pendulums, each of which is recognizable as being a
pendulum, and for any two people pointing at pendulums we can tell if they’re pointing
at the same pendulum or not.

Notation 2.1.1.1. The symbol ¢ denotes the set with no elements. The symbol N
denotes the set of natural numbers, which we can write as

N:={0,1,2,3,4,...,877,...}.

The symbol Z denotes the set of integers, which contains both the natural numbers and
their negatives,
Z:={...,-551,...,—2,—1,0,1,2,...}.

If A and B are sets, we say that A is a subset of B, and write A < B, if every element
of A is an element of B. So we have N < Z. Checking the definition, one sees that

INote that the symbol 2/, read “x-prime”, has nothing to do with calculus or derivatives. It is simply
notation that we use to name a symbol that is suggested as being somehow like . This suggestion
of kinship between z and z’ is meant only as an aid for human cognition, and not as part of the
mathematics.
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X ¥

Figure 2.1: A set X with 9 elements and a set Y with no elements, Y = (7.

for any set A, we have (perhaps uninteresting) subsets & € A and A € A. We can
use set-builder motation to denote subsets. For example the set of even integers can be
written {n € Z | n is even}. The set of integers greater than 2 can be written in many
ways, such as

{neZ|n>2} or {neN|n>2} or {neN|n >3}

The symbol 3 means “there exists”. So we could write the set of even integers as
{neZ|nis even} = {n € Z | Im € Z such that 2m = n}.

The symbol 3! means “there exists a unique”. So the statement “3!z € R such that z? =
0” means that there is one and only one number whose square is 0. Finally, the symbol
YV means “for all”. So the statement “Vm € N 3n € N such that m < n” means that for
every number there is a bigger one.

As you may have noticed, we use the colon-equals notation “ A := XY Z ” to mean
something like “define A to be XY Z”. That is, a colon-equals declaration is not denoting
a fact of nature (like 2 4+ 2 = 4), but a choice of the speaker. It just so happens that the
notation above, such as N := {0, 1,2, ...}, is a widely-held choice.

Ezercise 2.1.1.2. Let A = {1,2,3}. What are all the subsets of A? Hint: there are 8. ¢

2.1.2 Functions

If X and Y are sets, then a function f from X to Y, denoted f: X — Y, is a mapping
that sends each element z € X to an element of Y, denoted f(z) € Y. We call X the
domain of the function f and we call Y the codomain of f.
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Note that for every element x € X, there is exactly one arrow emanating from z,
but for an element y € Y, there can be several arrows pointing to y, or there can be no
arrows pointing to y.

Application 2.1.2.1. In studying the mechanics of materials, one wishes to know how a
material responds to tension. For example a rubber band responds to tension differently
than a spring does. To each material we can associate a force-extension curve, recording
how much force the material carries when extended to various lengths. Once we fix
a methodology for performing experiments, finding a material’s force-extension curve

would ideally constitute a function from the set of materials to the set of curves. Z

Y

Exercise 2.1.2.2. Here is a simplified account of how the brain receives light. The eye
contains about 100 million photoreceptor (PR) cells. Each connects to a retinal ganglion
(RG) cell. No PR cell connects to two different RG cells, but usually many PR cells can
attach to a single RG cell.

Let PR denote the set of photoreceptor cells and let RG denote the set of retinal
ganglion cells.

a.) According to the above account, does the connection pattern constitute a function
RG — PR, a function PR — RG or neither one?

b.) Would you guess that the connection pattern that exists between other areas of the
brain are “function-like”?

¢

Ezample 2.1.2.3. Suppose that X is a set and X’ € X is a subset. Then we can consider
the function X’ — X given by sending every element of X’ to “itself” as an element of
X. For example if X = {a,b,¢,d,e, f} and X' = {b,d, e} then X' € X and we turn that
into the function X’ — X given by b — b, d— d,e — e. =

As a matter of notation, we may sometimes say something like the following: Let X
be a set and let i: X’ € X be a subset. Here we are making clear that X’ is a subset of

X, but that ¢ is the name of the associated function.

2In reality, different samples of the same material, say samples of different sizes or at different
temperatures, may have different force-extension curves. If we want to see this as a true function whose
codomain is curves it should have as domain something like the set of material samples.

3This kind of arrow, — , is read aloud as “maps to”. A function f: X — Y means a rule for assigning
to each element z € X an element f(z) € Y. We say that “z maps to f(z)” and write z — f(z).


http://en.wikipedia.org/wiki/Stress�strain_curve
http://en.wikipedia.org/wiki/Retina
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Ezxercise 2.1.2.4. Let f: N — N be the function that sends every natural number to its
square, e.g. f(6) = 36. First fill in the blanks below, then answer a question.

a.) 2—

b.) 0 —

c.) —2—

d.) 5

e.) Consider the symbol — and the symbol —. What is the difference between how

these two symbols are used in this book?

¢

Given a function f: X — Y, the elements of Y that have at least one arrow pointing
to them are said to be in the image of f; that is we have

im(f) :={yeY | 3z € X such that f(z) = y}. (2.3)

Ezercise 2.1.2.5. If f: X — Y is depicted by (2.2) above, write its image, im(f) as a
set. o

Given a function f: X — Y and a function g: Y — Z, where the codomain of f is
the same set as the domain of g (namely V'), we say that f and g are composable

xJt.yv_2.,7

The composition of f and g is denoted by go f: X — Z.

X Y zZ
. .}{““‘m '

Figure 2.4: Functions f: X — Y and ¢g: Y — Z compose to a function go f: X — Z;
just follow the arrows.

Let X and Y be sets. We write Homget (X, Y') to denote the set of functions X — Y.
2 Note that two functions f,g: X — Y are equal if and only if for every element x € X
we have f(z) = g(x).

Ezercise 2.1.2.6. Let A = {1,2,3,4,5} and B = {z,y}.

4The strange notation Homget (—, —) will make more sense later, when it is seen as part of a bigger
story.
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a.) How many elements does Homget (4, B) have?

b.) How many elements does Homget (B, A) have?

FEzxercise 2.1.2.7.

a.) Find a set A such that for all sets X there is exactly one element in Homget (X, A).
Hint: draw a picture of proposed A’s and X's.

b.) Find a set B such that for all sets X there is exactly one element in Homget (B, X).

0

For any set X, we define the identity function on X, denoted idx: X — X, to be
the function such that for all z € X we have idx(z) = .

Definition 2.1.2.8 (Isomorphism). Let X and Y be sets. A function f: X — Y is
called an isomorphism, denoted f: X =, Y, if there exists a function g: Y — X such
that go f = idx and fog = idy. We also say that f is invertible and we say that g
is the inverse of f. If there exists an isomorphism X —> Y we say that X and Y are
isomorphic sets and may write X =Y.

Example 2.1.2.9. If X and Y are sets and f: X — Y is an isomorphism then the
analogue of Diagram 2.2 will look like a perfect matching, more often called a one-to-
one correspondence. That means that no two arrows will hit the same element of Y,
and every element of Y will be in the image. For example, the following depicts an
isomorphism X =Y.

X - 4

(2.5)

Application 2.1.2.10. There is an isomorphism between the set Nucpya of nucleotides
found in DNA and the set Nucgna of nucleotides found in RNA. Indeed both sets have
four elements, so there are 24 different isomorphisms. But only one is useful. Before we
say which one it is, let us say there is also an isomorphism Nucpna = {4,C,G, T} and
an isomorphism Nucgna = {A,C,G,U}, and we will use the letters as abbreviations for
the nucleotides.

The convenient isomorphism Nucpya = Nucgrna is that given by RNA transcription;
it sends

A—~UC-G G- C,T— A.


http://en.wikipedia.org/wiki/Nucleotides
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(See also Application 4.1.2.19.) There is also an isomorphism Nucpna = Nucpna (the
matching in the double-helix) given by

AsT,0 0 GG C,T — A

Protein production can be modeled as a function from the set of 3-nucleotide se-
quences to the set of eukaryotic amino acids. However, it cannot be an isomorphism
because there are 43 = 64 triplets of RNA nucleotides, but only 21 eukaryotic amino
acids.

00

Ezercise 2.1.2.11. Let n € N be a natural number and let X be a set with exactly n
elements.

a.) How many isomorphisms are there from X to itself?

b.) Does your formula from part a.) hold when n = 07

Lemma 2.1.2.12. The following facts hold about isomorphism.
1. Any set A is isomorphic to itself: i.e. there exists an isomorphism A => A.
2. For any sets A and B, if A is isomorphic to B then B is isomorphic to A.

3. For any sets A, B, and C, if A is isomorphic to B and B is isomorphic to C then
A is isomorphic to C'.

Proof. 1. The identity function ids: A — A is invertible; its inverse is id4 because
idA OidA = idA.

2. If f: A — B is invertible with inverse g: B — A then g is an isomorphism with
inverse f.

3.If f: A—> B and f': B —> C are each invertible with inverses g: B — A and
g': C — B then the following calculations show that f’ o f is invertible with
inverse g o g’

(flof)olgog)=folfog)og =foidpog = fog =idc
(gog)o(f'of)y=go(gdof)of=goidpof=gof=ida

Ezxercise 2.1.2.13. Let A and B be the sets drawn below:

A= B:=

oo
LEN]

[ 2]
(X ]
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Note that the sets A and B are isomorphic. Supposing that f: B — {1,2,3,4,5} sends
“Bob” to 1, sends & to 3, and sends 78 to 4, is there a canonical function A — {1,2,3,4,5}
corresponding to f? 2 o

Ezercise 2.1.2.14. Find a set A such that for any set X there is a isomorphism of sets
X =~ Homget (A4, X).

Hint: draw a picture of proposed A’s and X’s. O

For any natural number n € N, define a set
n:={1,2,3,...,n}. (2.6)
So, in particular, 2 = {1,2},1 = {1}, and 0 = (.
Let A be any set. A function f: n — A can be written as a sequence
FExercise 2.1.2.15.
a.) Let A ={a,b,c,d}. If f: 10 > A is given by (a,b,c,¢,b,a,d,d,a,b), what is f(4)?
b.) Let s: 7 — N be given by s(i) = i%. Write s out as a sequence.

Definition 2.1.2.16. Cardinality of finite sets]|
Let A be a set and n € N a natural number. We say that A is has cardinality n,
denoted
|A‘ = n7

if there exists an isomorphism of sets A =~ n. If there exists some n € N such that A has
cardinality n then we say that A is finite. Otherwise, we say that A is infinite and write
|A| = o0.

Exercise 2.1.2.17.
a.) Let A ={5,6,7}. What is |A|?
b.) What is |N|?
c.) What is [{n e N | n < 5}|?
¢

Lemma 2.1.2.18. Let A and B be finite sets. If there is an isomorphism of sets f: A —
B then the two sets have the same cardinality, |A| = |B|.

Proof. Suppose f: A — B is an isomorphism. If there exists natural numbers m,n €

N and isomorphisms a: m = Aand b:n = B then m o, AL BY n is an
isomorphism. One can prove by induction that the sets m and n are isomorphic if and
only if m = n.

O

5Canonical means something like “best choice”, a choice that stands out as the only reasonable one.
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2.2 Commutative diagrams

At this point it is difficult to precisely define diagrams or commutative diagrams in
general, but we can give the heuristic idea. 5 Consider the following picture:

A—1.nB (2.7)

N

C

We say this is a diagram of sets if each of A, B, C' is a set and each of f, g, h is a function.
We say this diagram commutes if g o f = h. In this case we refer to it as a commutative
triangle of sets.

Application 2.2.1.1. The central dogma of molecular biology is that “DNA codes for
RNA codes for protein”. That is, there is a function from DNA triplets to RNA triplets
and a function from RNA triplets to amino acids. But sometimes we just want to discuss
the translation from DNA to amino acids, and this is the composite of the other two.
The commutative diagram is a picture of this fact.

00

Consider the following picture:

f

A—s

sy

h

-
Q

N

We say this is a diagram of sets if each of A, B,C, D is a set and each of f,g,h,i is a
function. We say this diagram commutes if g o f = i o h. In this case we refer to it as a
commutative square of sets.

Application 2.2.1.2. Given a physical system S, there may be two mathematical ap-
proaches f: S — A and g: S — B that can be applied to it. Either of those results in
a prediction of the same sort, f': A — P and ¢': B — P. For example, in mechanics
we can use either Lagrangian approach or the Hamiltonian approach to predict future
states. To say that the diagram

S A

B P

commutes would say that these approaches give the same result.

—_—

R

Y

And so on. Note that diagram (2.7) is considered to be the same diagram as each of

6We will define commutative diagrams precisely in Section 4.5.2.


http://en.wikipedia.org/wiki/Central_dogma_of_molecular_biology
http://en.wikipedia.org/wiki/Hamiltonian_mechanics#As_a_reformulation_of_Lagrangian_mechanics
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the following;:

A—1-B Al.p . ¢ B
h / h
g
C 7 C

N
A

A

2.3 Ologs

In this course we will ground the mathematical ideas in applications whenever possible.
To that end we introduce ologs, which will serve as a bridge between mathematics and
various conceptual landscapes. The following material is taken from [SK], an introduction
to ologs.

E
D
an amino acid . A . an electrically- 28)
is . as -
found in dairy = - C}ﬁa?ged side
chain

v v
is .
is 1s

X R
N N has A A
an amino acid |——|a side chain
% N
C

‘ a carboxylic acid ‘

N
an amine group

2.3.1 Types

A type is an abstract concept, a distinction the author has made. We represent each
type as a box containing a singular indefinite noun phrase. Each of the following four
boxes is a type:

s 29

a pair (a,w), where w is a pair (a,w) where w is
a woman and a is an au- a woman and a is a blue
tomobile automobile owned by w

Each of the four boxes in (2.9) represents a type of thing, a whole class of things,
and the label on that box is what one should call each example of that class. Thus "a
man” does not represent a single man, but the set of men, each example of which is
called “a man”. Similarly, the bottom right box represents an abstract type of thing,
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which probably has more than a million examples, but the label on the box indicates the
common name for each such example.

Typographical problems emerge when writing a text-box in a line of text, e.g. the
text-box seems out of place here, and the more in-line text-boxes there are, the
worse it gets. To remedy this, I will denote types which occur in a line of text with
corner-symbols; e.g. I will write "a man™ instead of [a man |

2.3.1.1 Types with compound structures

Many types have compound structures; i.e. they are composed of smaller units. Exam-
ples include

a triple (p,a,j) where p is
a paper, a is an author of
p, and j is a journal in
which p was published

a food portion f and
a child ¢ such that ¢
ate all of f

a man and
a woman

(2.10)

It is good practice to declare the variables in a “compound type”, as I did in the last
two cases of (2.10). In other words, it is preferable to replace the first box above with
something like

a pair (m,w)
or where m is a man
and w is a woman

a man m and
a woman w

so that the variables (m,w) are clear.

Rules of good practice 2.3.1.2. A type is presented as a text box. The text in that box
should

(i) begin with the word “a” or “an”;

)
(ii) refer to a distinction made and recognizable by the olog’s author;
(iii) refer to a distinction for which instances can be documented;

)

(iv) declare all variables in a compound structure.

The first, second, and third rules ensure that the class of things represented by
each box appears to the author as a well-defined set. The fourth rule encourages good
“readability” of arrows, as will be discussed next in Section 2.3.2.

I will not always follow the rules of good practice throughout this document. I
think of these rules being followed “in the background” but that I have “nicknamed”
various boxes. So "Steve® may stand as a nickname for "a thing classified as Steve™
and Targinine™ as a nickname for "a molecule of arginine™. However, when pressed, one
should always be able to rename each type according to the rules of good practice.

2.3.2 Aspects

An aspect of a thing x is a way of viewing it, a particular way in which x can be regarded
or measured. For example, a woman can be regarded as a person; hence “being a person”
is an aspect of a woman. A molecule has a molecular mass (say in daltons), so “having
a molecular mass” is an aspect of a molecule. In other words, by aspect we simply mean
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a function. The domain A of the function f: A — B is the thing we are measuring, and
the codomain is the set of possible “answers” or results of the measurement.

[a woman | —>[a person| (2.11)

has as molecular mass (Da) —
’a positive real number‘ (2.12)

So for the arrow in (2.11), the domain is the set of women (a set with perhaps 3 billion
elements); the codomain is the set of persons (a set with perhaps 6 billion elements).
We can imagine drawing an arrow from each dot in the “woman” set to a unique dot in
the “person” set, just as in (2.2). No woman points to two different people, nor to zero
people — each woman is exactly one person — so the rules for a function are satisfied.
Let us now concentrate briefly on the arrow in (2.12). The domain is the set of molecules,
the codomain is the set R. of positive real numbers. We can imagine drawing an arrow
from each dot in the “molecule” set to a single dot in the “positive real number” set. No
molecule points to two different masses, nor can a molecule have no mass: each molecule
has exactly one mass. Note however that two different molecules can point to the same
mass.

2.3.2.1 Invalid aspects

I tried above to clarify what it is that makes an aspect “valid”, namely that it must be
a “functional relationship.” In this subsection I will show two arrows which on their face
may appear to be aspects, but which on closer inspection are not functional (and hence
are not valid as aspects).

Consider the following two arrows:

[a person] - (2.13%)

‘a mechanical pencil ‘ ﬂ)’ a piece of lead‘ (2.14%)

A person may have no children or may have more than one child, so the first arrow is
invalid: it is not a function. Similarly, if we drew an arrow from each mechanical pencil
to each piece of lead it uses, it would not be a function.

Warning 2.3.2.2. The author of an olog has a world-view, some fragment of which is
captured in the olog. When person A examines the olog of person B, person A may or
may not “agree with it.” For example, person B may have the following olog

a marriage

iny WS

a man a woman

which associates to each marriage a man and a woman. Person A may take the position
that some marriages involve two men or two women, and thus see B’s olog as “wrong.”
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Such disputes are not “problems” with either A’s olog or B’s olog, they are discrepancies
between world-views. Hence, throughout this paper, a reader R may see a displayed olog
and notice a discrepancy between R’s world-view and my own, but R should not worry
that this is a problem. This is not to say that ologs need not follow rules, but instead
that the rules are enforced to ensure that an olog is structurally sound, rather than that
it “correctly reflects reality,” whatever that may mean.

Consider the aspect "an object™ _has g weight™. At some point in history, this

would have been considered a valid function. Now we know that the same object
would have a different weight on the moon than it has on earth. Thus as world-

views change, we often need to add more information to our olog. Even the validity

of Tan object on earth™ _has L rp weight™ is questionable. However to build a model

we need to choose a level of granularity and try to stay within it, or the whole model
evaporates into the nothingness of truth!

Remark 2.3.2.3. In keeping with Warning 2.3.2.2, the arrows (2.13*) and (2.14*) may
not be wrong but simply reflect that the author has a strange world-view or a strange
vocabulary. Maybe the author believes that every mechanical pencil uses exactly one
piece of lead. If this is so, then "a mechanical pencil? ———> Ta piece of lead” is indeed
a valid aspect! Similarly, suppose the author meant to say that each person was once
a child, or that a person has an inner child. Since every person has one and only one
inner child (according to the author), the map "a person™ ‘has as nner child, -, hi1q7 is a
valid aspect. We cannot fault the olog if the author has a view, but note that we have
changed the name of the label to make his or her intention more explicit.

2.3.2.4 Reading aspects and paths as English phrases

Each arrow (aspect) X 1, ¥ can be read by first reading the label on its source box
(domain of definition) X, then the label on the arrow f, and finally the label on its
target box (set of values) Y. For example, the arrow

has as first author
a book a person (2.15)

is read “a book has as first author a person”.

Remark 2.3.2.5. Note that the map in (2.15) is a valid aspect, but that a similarly

. . has as author . .
benign-looking map "a book™ ——————— Ta person™ would not be valid, because it

is not functional. The authors of an olog must be vigilant about this type of mistake
because it is easy to miss and it can corrupt the olog.

Sometimes the label on an arrow can be shortened or dropped altogether if it is
obvious from context. We will discuss this more in Section 2.3.3 but here is a common
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example from the way I write ologs.

A

a pair (z,y) where (2.16)
x and y are integers

an integer an integer

Neither arrow is readable by the protocol given above (e.g. “a pair (z,y) where x and
y are integers = an integer” is not an English sentence), and yet it is obvious what each
map means. For example, given (8,11) in A, arrow 2 would yield 8 and arrow y would
yield 11. The label = can be thought of as a nickname for the full name “yields, via the
value of z,” and similarly for y. I do not generally use the full name for fear that the
olog would become cluttered with text.

One can also read paths through an olog by inserting the word “which” after each
intermediate box. Z For example the following olog has two paths of length 3 (counting
arrows in a chain):

a pair (w, m)

i has as parents h i
: is p where w is a w
a child | ——|a person —> | a woman (2.17)
woman and m

is a man

has, as birthday

includes
a date | ————— | a year

The top path is read “a child is a person, who has as parents a pair (w,m) where w is a
woman and m is a man, which yields, via the value of w, a woman.” The reader should
read and understand the content of the bottom path, which associates to every child a
year.

2.3.2.6 Converting non-functional relationships to aspects

There are many relationships that are not functional, and these cannot be considered

aspects. Often the word “has” indicates a relationship — sometimes it is functional as in

has . o . . has .
Ta person’ —— "a stomach™, and sometimes it is not, as in "a father™ — Ta child™.

Obviously, a father may have more than one child. This one is easily fixed by realizing

that the arrow should go the other way: there is a function "a child™ a5, ra father™.

What about Ta person™ 2 Fa car”. Again, a person may own no cars or more
than one car, but this time a car can be owned by more than one person too. A quick fix
would be to replace it by Ta person™ —= Ta set of cars™. This is ok, but the relationship
between "a car™ and "a set of cars” then becomes an issue to deal with later. There is

7If the intended elements of an intermediate box are humans, it is polite to use “who” rather than
“which”, and other such conventions may be upheld if one so desires.
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another way to indicate such “non-functional” relationships. In this case it would look
like this:

a pair (p,c) where
p is a person, c is a
car, and p owns c.

/ \

This setup will ensure that everything is properly organized. In general, relationships
can involve more than two types, and the general situation looks like this

7AN

R
a sequence (p, a, j) where p
is a paper, a is an author
of p, and j is a journal in
which p was published

For example,

A2 A3

Ay

Ezercise 2.3.2.7. On page 25 we indicate a so-called invalid aspect, namely

a person 15, ['a child (2.13%)
213"

Create a (valid) olog that captures the parent-child relationship; your olog should still
have boxes "a person™ and "a child? but may have an additional box. o

Rules of good practice 2.3.2.8. An aspect is presented as a labeled arrow, pointing from
a source box to a target box. The arrow text should
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(i) begin with a verb;

(ii) yield an English sentence, when the source-box text followed by the arrow text
followed by the target-box text is read; and

(iii) refer to a functional relationship: each instance of the source type should give rise
to a specific instance of the target type.

2.3.3 Facts

In this section I will discuss facts, which are simply “path equivalences” in an olog. It is
the notion of path equivalences that make category theory so powerful.

A path in an olog is a head-to-tail sequence of arrows. That is, any path starts at
some box By, then follows an arrow emanating from By (moving in the appropriate
direction), at which point it lands at another box By, then follows any arrow emanating
from B, etc, eventually landing at a box B,, and stopping there. The number of arrows
is the length of the path. So a path of length 1 is just an arrow, and a path of length 0
is just a box. We call By the source and B,, the target of the path.

Given an olog, the author may want to declare that two paths are equivalent. For
example consider the two paths from A to C' in the olog

B
N a pair (w,m)

has as parents | where w is a
a person —_— (218)
woman and

m is a man

has as mother \Lyields as w

c

a woman

We know as English speakers that a woman parent is called a mother, so these two paths
A — (' should be equivalent. A more mathematical way to say this is that the triangle in
Olog (2.18) commutes. That is, path equivalences are simply commutative diagrams as
in Section 2.2. In the example above we concisely say “a woman parent is equivalent to
a mother.” We declare this by defining the diagonal map in (2.18) to be the composition
of the horizontal map and the vertical map.

I generally prefer to indicate a commutative diagram by drawing a check-mark, v/,
in the region bounded by the two paths, as in Olog (2.18). Sometimes, however, one
cannot do this unambiguously on the 2-dimensional page. In such a case I will indicate
the commutative diagrams (fact) by writing an equation. For example to say that the
diagram

commutes, we could either draw a checkmark inside the square or write the equation
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A f g~ A hiabove it. & Either way, it means that “f then ¢” is equivalent to “h then

59

7
Here is another, more scientific example:

is transcribed to
[

a DNA sequence an RNA sequence ‘

v
is translated to

a protein

Note how this diagram gives us the established terminology for the various ways in which
DNA, RNA, and protein are related in this context.

codes for

Exercise 2.3.3.1. Create an olog for human nuclear biological families that includes the
concept of person, man, woman, parent, father, mother, and child. Make sure to label
all the arrows, and make sure each arrow indicates a valid aspect in the sense of Section
2.3.2.1. Indicate with check-marks (v') the diagrams that are intended to commute. If the
2-dimensionality of the page prevents a check-mark from being unambiguous, indicate
the intended commutativity with an equation. O

Ezample 2.3.3.2 (Non-commuting diagram). In my conception of the world, the following
diagram does not commute:

ias as father oy (2.19)

. . lives in
lives in

The non-commutativity of Diagram (2.19) does not imply that, in my conception, no
person lives in the same city as his or her father. Rather it implies that, in my conception,
it is not the case that every person lives in the same city as his or her father.

Exercise 2.3.3.3. Create an olog about a scientific subject, preferably one you think
about often. The olog should have at least five boxes, five arrows, and one commutative
diagram. O

2.3.3.4 A formula for writing facts as English

Every fact consists of two paths, say P and @, that are to be declared equivalent. The
paths P and @ will necessarily have the same source, say s, and target, say t, but their

8We defined function composition on page 2.1.2, but here we’re using a different notation. There we
would have said g o f = i o h, which is in thmckwards-seeming classical order. Category theorists
and others often prefer the diagrammatic order for writing compositions, which is f;g = h;i. For ologs,
we follow the latter because it makes for better English sentences, and for the same reason we add the
source object to the equation, writing Afg ~ Ahi.
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lengths may be different, say m and n respectively. 2 We draw these paths as

= fm—1 Qm— ™ m=t
p- a0=5 f1 ar f2 a2 f3 . L amet fm a A (2.20)
bo=s g1 b1 g2 ba g3 gn-1 bn-1  gn bp=t
Q: ° ° ° S ° .

Every part £ of an olog (i.e. every box and every arrow) has an associated English phrase,
which we write as “¢”. Using a dummy variable x we can convert a fact into English too.
The following general formula is a bit difficult to understand, see Example 2.3.3.5, but
here goes. The fact P ~ @ from (2.20) can be Englishified as follows:

Given x,“s”, consider the following. We know that x is “s”, (2.21)
which “f1” “a1”, which “f3” “as”, which ... “fn_1” “am—1", which “f,,” “t”
that we’ll call P(x).

We also know that z is “s”,

which “g1” “by”, which “g” “bo”, which ... “gp—1” “by—1”, which “g,,” “t”

that we’ll call Q(x).

Fact: whenever z is “s”, we will have P(z) = Q(x).

Example 2.3.3.5. Consider the olog

A I B
[a person] ——*— [an address | (2:22)

v lis in
lives in

c

To put the fact that Diagram 2.22 commutes into English, we first Englishify the two
paths: F'="a person has an address which is in a city” and G="a person lives in a city”.
The source of both is s=“a person” and the target of both is t="“a city”. write:

Given z,a person, consider the following. We know that x is a person,
which has an address, which is in a city

that we’ll call P(x).

We also know that x is a person,

which lives in a city

that we’ll call Q(z).

Fact: whenever z is a person, we will have P(z) = Q(z).

9If the source equals the target, s = t, then it is possible to have m = 0 or n = 0, and the ideas below
still make sense.
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Ezercise 2.3.3.6. This olog was taken from [Spl].

N c
has
‘a phone number ‘4> an area code

is assigned
ds t
v corresponds to
OLP

. P
an operational land-

R
. ——| a physical hone‘—>
line phone is ‘ Py b is currently 8

located in

(2.23)

It says that a landline phone is physically located in the region that its phone number
is assigned. Translate this fact into English using the formula from 2.21. O

Ezercise 2.3.3.7. In the above olog (2.23), suppose that the box Tan operational landline
phone™ is replaced with the box "an operational mobile phone™. Would the diagram still
commute? 0

2.3.3.8 Images

In this section we discuss a specific kind of fact, generated by any aspect. Recall that
every function has an image, meaning the subset of elements in the codomain that are
“hit” by the function. For example the function f(x) = 2+ x: Z — Z has as image the
set of all even numbers.

Similarly the set of mothers arises as is the image of the “has as mother” function,

as shown below
P f: P>P P

a person has as mother a person

v !
has is

M=im(f)

Exercise 2.3.3.9. For each of the following types, write down a function for which it is
the image, or say “not clearly an image type”

a.) "a book™

) Ta material that has been fabricated by a process of type T

) Ta bicycle owner™

d.) Ta child™

) Ta used book™
)

Tan inhabited residence™

2.4 Products and coproducts

In this section we introduce two concepts that are likely to be familiar, although perhaps
not by their category-theoretic names, product and coproduct. Each is an example of a
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large class of ideas that exist far beyond the realm of sets.

2.4.1 Products

Definition 2.4.1.1. Let X and Y be sets. The product of X and Y, denoted X x Y, is
defined as the set of ordered pairs (x,y) where € X and y € Y. Symbolically,

XxY={(z,y)|zeX, yeY}.
There are two natural projection functions mi: X xY - X and m3: X xY - Y.

X xY

A
X Y
Ezample 2.4.1.2. [Grid of dots]

Let X ={1,2,3,4,5,6} and Y = {&, {, 0, #}. Then we can draw X x Y as a 6-by-4
grid of dots, and the projections as projections

X xY

(L&)  (24) (B34 (4% (54  (6&) *

° ° ° L L * °
SO A A I R I (2.24)
1o (29 GB9 @Y 69  (69) .

° ° ° L L * ¢
(18) 28 GA) (LA G (68 $

° ° ° L o ®

o
[ ]

Application 2.4.1.3. A traditional (Mendelian) way to predict the genotype of offspring
based on the genotype of its parents is by the use of Punnett squares. If F' is the set of
possible genotypes for the female parent and M is the set of possible genotypes of the
male parent, then F' x M is drawn as a square, called a Punnett square, in which every
combination is drawn. 00

Ezercise 2.4.1.4. How many elements does the set {a, b, c,d} x {1,2,3} have? o



http://en.wikipedia.org/wiki/Punnett_square
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Application 2.4.1.5. Suppose we are conducting experiments about the mechanical prop-
erties of materials, as in Application 2.1.2.1. For each material sample we will produce
multiple data points in the set "extension™ x "force™ =~ R x R.

00

Remark 2.4.1.6. It is possible to take the product of more than two sets as well. For
example, if A, B, and C are sets then A x B x C' is the set of triples,

Ax BxC:={(a,b,c)|aeAbe B,ceC}.

This kind of generality is useful in understanding multiple dimensions, e.g. what
physicists mean by 10-dimensional space. It comes under the heading of limits, which
we will see in Section 4.5.3.

Example 2.4.1.7. Let R be the set of real numbers. By R? we mean R x R (though see
Exercise 2.7.2.6). Similarly, for any n € N, we define R to be the product of n copies of
R.

According to [Pen], Aristotle seems to have conceived of space as something like
S := R3 and of time as something like 7' := R. Spacetime, had he conceived of it,
would probably have been S x T = R*. He of course did not have access to this kind of
abstraction, which was probably due to Descartes.

Exercise 2.4.1.8. Let Z denote the set of integers, and let +: Z x Z — Z denote the
addition function and -: Z x Z — Z denote the multiplication function. Which of the
following diagrams commute?

a.)

(a,b,c)—(a-b,a-c)

ZXZXZ 7 X7
(a7b,C)'—>(a+b70)J/ J{(Ly)'—w-%y
Z X7 A
(z,y)—zy
b.)
z—(x,0)
7 —-—T>7 XZ
i J{(a,b)'—»wb
Z

z_ @) o
i l(a,b)r—m-b
Z

2.4.1.9 Universal property for products

Lemma 2.4.1.10 (Universal property for product). Let X and Y be sets. For any set
A and functions f: A — X and g: A - Y, there exists a unique function A - X x Y
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such that the following diagram commutes 1

X xY (2.25)

We might write the unique function as
(fr9): A—> X xY.

Proof. Suppose given f, g as above. To provide a function £: A — X x Y is equivalent
to providing an element £(a) € X x Y for each a € A. We need such a function for which
mof = fand my0f = g. An element of X x Y is an ordered pair (x,y), and we can
use £(a) = (z,y) if and only if x = m1(x,y) = f(a) and y = ma(z,y) = g(a). So it is
necessary and sufficient to define

(f,9)(a) := (f(a), g(a))

for all a € A.
O

Ezample 2.4.1.11 (Grid of dots, continued). We need to see the universal property of
products as completely intuitive. Recall that if X and Y are sets, say of cardinalities
|X| = m and |Y| = n respectively, then X x Y is an m x n grid of dots, and it comes
with two canonical projections X <+ X x Y 2 Y. These allow us to extract from
every grid element z € X x Y its column 71 (2) € X and its row ma(z) € Y.

Suppose that each person in a classroom picks an element of X and an element of
Y. Thus we have functions f: C' — X and g: C — Y. But isn’t picking a column and a
row the same thing as picking an element in the grid? The two functions f and g induce
a unique function C' — X x Y. And how does this function C' — X x Y compare with
the original functions f and g? The commutative diagram (2.25) sums up the obvious
connection.

Example 2.4.1.12. Let R be the set of real numbers. The origin in R is an element of R.
As you showed in Exercise 2.1.2.14, we can view this (or any) element of R as a function
z: {®} — R, where {®} is any set with one element. Our function z “picks out the
origin”. Thus we can draw functions

{o}
R R
10The symbol V is read “for all”; the symbol 3 is read “there exists”, and the symbol 3! is read “there

exists a unique”. So this diagram is intended to express the idea that for any functions f: A — X and
g: A — Y, there exists a unique function A — X x Y for which the two triangles commute.
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The universal property for products guarantees a function {®} — R x R, which will be
the origin in R2.

Remark 2.4.1.13. Given sets X, Y, and A, and functions f: A > X and g: A — Y, there
is a unique function A — X x Y that commutes with f and g. We call it the induced
function A — X x Y, meaning the one that arises in light of f and g.

Ezercise 2.4.1.14. For every set A there is some nice relationship between the following
three sets:

Homget (A4, X), Homget (A,Y), and Homget (A4, X x Y).

What is it?
Hint: Do not be alarmed: this problem is a bit “recursive” in that you’ll use products
in your formula. ¢

FExercise 2.4.1.15.

a.) Let X and Y be sets. Construct the “swap map” s: X x Y — Y x X using only
the universal property for products. If m1: X xY — X and m: X xY — Y are the
projection functions, write s in terms of the symbols “m1”, “my”, “(', )”, and “ o ”.

b.) Can you prove that s is a isomorphism using only the universal property for product?

o
Ezample 2.4.1.16. Suppose given sets X, X' Y, Y’ and functions m: X — X’ andn: Y —
Y’. We can use the universal property of products to construct a function s: X x Y —
X' xY'. Here’s how.

The universal property (Lemma 2.4.1.10) says that to get a function from any set A
to X’ x Y’, we need two functions, namely some f: A — X’ and some g: A — Y'. Here
A=XxY.

What we have readily available are the two projections m1: X xY — X and mo: X %
Y — Y. But we also have m: X — X’ and n: Y — Y’. Composing, we set f := mom
and g := n o ms.

X' xY’

X xY

The dotted arrow is often called the product of m: X — X’ and n: Y — Y’ and is
denoted simply by

mxn: XxY - X' xY'.
2.4.1.17 Ologging products

Given two objects ¢, d in an olog, there is a canonical label “c x d” for their product ¢ x d,
written in terms of the labels “c” and “d”. Namely,

“c x d” := a pair (z,y) where x is “c” and y is “d”.
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The projections ¢ <— ¢ x d — d can be labeled “yields, as z,” and “yields, as y,” respec-
tively.

Suppose that e is another object and p: e — c and ¢: e — d are two arrows. By
the universal property of products (Lemma 2.4.1.10), p and ¢ induce a unique arrow
e — ¢ x d making the evident diagrams commute. This arrow can be labeled

yields, insofar as it “p” “¢” and “q” “d”,

Example 2.4.1.18. Every car owner owns at least one car, but there is no obvious function
Ta car owner' — "a car” because he or she may own more than one. One good choice
would be the car that the person drives most often, which we’ll call his or her primary
car. Also, given a person and a car, an economist could ask how much utility the person
would get out of the car. From all this we can put together the following olog involving
products:

yields, insofar PxC
as it is a person .
o and owns, as a pair (l‘, y) has as associ- v

primary, a car, |where a2 1is a | ated utility
a car owner | ——> — > a dollar value

person and y is
a car

. owns, as
18 primary,
yields, as y,

yields, as z,

]

2.4.2 Coproducts

Definition 2.4.2.1. Let X and Y be sets. The coproduct of X and Y, denoted X LY,
is defined as the “disjoint union” of X and Y, i.e. the set for which an element is either
an element of X or an element of Y. If something is an element of both X and Y then
we include both copies, and distinguish between them, in X 1Y. See Example 2.4.2.2
There are two natural inclusion functions i1: X - X uY andis: Y - X uY.

X Y
N A
XuyYy
Ezample 2.4.2.2. The coproduct of X := {a,b,c,d} and Y := {1,2,3} is
XuY ~{a,b,cd 1,2, 3}
The coproduct of X and itself is
X u X = {i1a,i1b,i1¢,11d, i2a,i2b, isc, iad}

The names of the elements in X 1 Y are not so important. What’s important are the
inclusion maps i1,42, which ensure that we know where each element of X 1Y came
from.
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Ezample 2.4.2.3 (Airplane seats).

X Y
an economy- a first-class
class seat in seat in an (2.26)
an airplane airplane
XuY
a seat in an
airplane

Ezercise 2.4.2.4. Would you say that "a phone™ is the coproduct of "a cellphone™ and
Ta landline phone™? o

Ezample 2.4.2.5 (Disjoint union of dots).

XuY Y

(F ]
o~
o
w
e~
[$28
[=2]
(X ]

o>
o>

(2.27)

[ R¢]
(¢

(X 4
(X 4

i1

2.4.2.6 Universal property for coproducts

Lemma 2.4.2.7 (Universal property for coproduct). Let X and Y be sets. For any set
A and functions f: X — A and g: Y — A, there exists a unique function X Y — A
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such that the following diagram commutes

We might write the unique function as L

{f : XuY — A
g

Proof. Suppose given f, g as above. To provide a function £: X uY — A is equivalent
to providing an element f(m) € A is for each m € X uY. We need such a function such
that foi; = f and £ o iy = g. But each element m € X 1Y is either of the form i,z or
12y, and cannot be of both forms. So we assign

f m) — flz) if m =iz,
{g( ) {g(y) if m = isy.

This assignment is necessary and sufficient to make all relevant diagrams commute.
|

Ezample 2.4.2.8 (Airplane seats, continued). The universal property of coproducts says
the following. Any time we have a function X — A and a function ¥ — A, we get a
unique function X u'Y — A. For example, every economy class seat in an airplane and
every first class seat in an airplane is actually in a particular airplane. Every economy
class seat has a price, as does every first class seat.

A
‘a dollar figure ‘ (2.28)

. A
has as price | has as price
3!
X v v Y

|
XuY
a first-class

an economy- -
L is a seat in an is .
class seat in|—2 o[, <~——|seat in an
. airplane .
an airplane airplane
v ‘ v
arl
is in Y is in
B

an airplane

The universal property of coproducts formalizes the following intuitively obvious fact:

11'We are about to use a two-line symbol, which is a bit unusual. In what follows a certain function

X uY — A is being denoted by the symbol {2
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If we know how economy class seats are priced and we know how first class
seats are priced, and if we know that every seat is either economy class or
first class, then we automatically know how all seats are priced.

To say it another way (and using the other induced map):

If we keep track of which airplane every economy class seat is in and we
keep track of which airplane every first class seat is in, and if we know that
every seat is either economy class or first class, then we require no additional
tracking for any airplane seat whatsoever.

Application 2.4.2.9 (Piecewise defined curves). In science, curves are often defined or
considered piecewise. For example in testing the mechanical properties of a material,
we might be interested in various regions of deformation, such as elastic, plastic, or
post-fracture. These are three intervals on which the material displays different kinds of
properties.

For real numbers a < b € R, let [a,b] := {x € R|a < z < b} denote the closed
interval. Given a function [a,b] — R and a function [c,d] — R, the universal property
of coproducts implies that they extend uniquely to a function [a, b] L [¢,d] — R, which
will appear as a piecewise defined curve.

Often we are given a curve on [a, b] and another on [b, ¢|, where the two curves agree
at the point b. This situation is described by pushouts, which are mild generalizations
of coproducts; see Section 2.6.2.

00

Ezercise 2.4.2.10. Write the universal property for coproduct in terms of a relationship
between the following three sets:

Homget (X, A), Homget (Y, 4), and Homget (X 1Y, A).

¢

Example 2.4.2.11. In the following olog the types A and B are disjoint, so the coproduct
C = A u B is just the union.

A C=AuB B

is is
a person | —— ‘ a person or a cat ‘<— a cat

Ezxample 2.4.2.12. In the following olog, A and B are not disjoint, so care must be taken
to differentiate common elements.

C=AuB
A an animal that can fly B
an animal | labeled “A” is | (labeled “A”) or an| labeled “B” is |an animal that
that can fly animal that can swim can swim
(labeled “B”)

Since ducks can both swim and fly, each duck is found twice in C, once labeled as a
flyer and once labeled as a swimmer. The types A and B are kept disjoint in C, which
justifies the name “disjoint union.”


http://en.wikipedia.org/wiki/Deformation_(engineering)
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Ezxercise 2.4.2.13. Understand Example 2.4.2.12 and see if a similar idea would make
sense for particles and waves. Make an olog, and choose your wording in accordance with
Rules 2.3.1.2. How do photons, which exhibit properties of both waves and particles, fit
into the coproduct in your olog?

¢

Ezercise 2.4.2.14. Following the section above, “Ologging products” page 36, come up
with a naming system for coproducts, the inclusions, and the universal maps. Try it out
by making an olog (involving coproducts) discussing the idea that both a .wav file and
a .mp3 file can be played on a modern computer. Be careful that your arrows are valid
in the sense of Section 2.3.2.1. O

2.5 Finite limits in Set

In this section we discuss what are called limits of variously-shaped diagrams of sets.
We will make all this much more precise when we discuss limits in arbitrary categories
in Section 4.5.3.

2.5.1 Pullbacks

Definition 2.5.1.1 (Pullback). Suppose given the diagram of sets and functions below.

1~<

(2.29)

-
)

|

Its fiber product is the set

X xz V= {(z,wy) | f(z) =w=g(y)}.

There are obvious projections 11: X xzY — X and mo: X xzY =Y (e.g. mo(x,w,y) =
y). Note that if W = X xz Y then the diagram

s

oy (2.30)

w
2
X Z

—_

f

commutes. Given the setup of Diagram 2.29 we define the pullback of X and Y over Z

to be any set W for which we have an isomorphism W =, X xz Y. The corner symbol
2 in Diagram 2.30 indicates that W is the pullback.

Ezercise 2.5.1.2. Let X,Y,Z be as drawn and f: X — Z and g: Y — Z the indicated
functions.
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X ¥

What is the pullback of the diagram X g8y O
Ezercise 2.5.1.3.

a.) Draw a set X with five elements and a set Y with three elements. Color each
element of X and each element of Y either red, blue, or yellow, 12 and do so in a
“random-looking” way. Considering your coloring of X as a function X — C|, where
C = {red, blue, yellow}, and similarly obtaining a function ¥ — C, draw the fiber
product X x¢o Y. Make sure it is colored appropriately.

b.) The universal property for products guarantees a function X x¢Y — X x Y, which
I can tell you will be an injection. This means that the drawing you made of the
fiber product can be imbedded into the 5 x 3 grid; please draw the grid and indicate
this subset.

¢

Remark 2.5.1.4. Some may prefer to denote this fiber product by f xz g rather than
X xz Y. The former is mathematically better notation, but human-readability is often
enhanced by the latter, which is also more common in the literature. We use whichever
is more convenient.

Exercise 2.5.1.5.
a.) Suppose that Y = ¢F; what can you say about X xz Y?

b.) Suppose now that Y is any set but that Z has exactly one element; what can you
say about X xz Y?

¢

Ezercise 2.5.1.6. Let S = R3, T = R, and think of them as (Aristotelian) space and time,

with the origin in S x T' given by the center of mass of MIT at the time of its founding.

Let Y = SxT and let g;: Y — S be one projection and go: Y — T the other projection.

Let X = {®} be a set with one element and let f1: X — S and fo: X — T be given by
the origin in both cases.

a.) What are the fiber products W7 and Wa:

W1 —Y WQHY
4 4
i igl \L ig2
X——=S5 X——T
f1 f2

12You can use shadings rather than coloring, if coloring would be annoying.
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b.) Interpret these sets in terms of the center of mass of MIT at the time of its founding.

¢

2.5.1.7 Using pullbacks to define new ideas from old

In this section we will see that the fiber product of a diagram can serve to define a new
concept. For example, in (2.33) we define what it means for a cellphone to have a bad
battery, in terms of the length of time for which it remains charged. By being explicit,
we reduce the chance of misunderstandings between different groups of people. This can
be useful in situations like audits and those in which one is trying to reuse or understand
data gathered by others.

Ezxample 2.5.1.8. Consider the following two ologs. The one on the right is the pullback
of the one on the left.

A=Bx D C
c a customer ' ¢
a loyal that is wealthy | —>> | loyal
customer and loyal customer
lis iS\L Jis
B
) D B
a wealthy is Ith ) D
—> | a customer a wealthy is _
customer customer ——>| a customer

(2.31)

Check from Definition 2.5.1.1 that the label, “a customer that is wealthy and loyal”, is
fair and straightforward as a label for the fiber product A = B xp C, given the labels
on B,C, and D.

Remark 2.5.1.9. Note that in Diagram (2.31) the top-left box could have been (non-
canonically named) "a good customer™. If it was taken to be the fiber product, then the
author would be effectively defining a good customer to be one that is wealthy and loyal.

Exercise 2.5.1.10. For each of the following, an author has proposed that the diagram
on the right is a pullback. Do you think their labels are appropriate or misleading; that
is, is the label on the upper-left box reasonable given the rest of the olog, or is it suspect
in some way?

a.)

A=BxpC has as favorite c

a person whose _color
favorite color is blue

18 . is
is
has as favorite

has as fa it
B as as favorite D

B D
color
a person | —— | a color color
a person a color
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A=BxpC
c d he has as owner c
a woman E‘l, 0g whose owner —> | & woman
1S a woman

J{ls isl is

B D
has as owner B D
a dOg ———————————>| a person has as owner
a dog a person

c A=BxpC ; c
a piece of a good fit > | a piece of
furniture furniture
ihas Sl lhas
B D B D
our house our house

FExercise 2.5.1.11.

a.) Counsider your olog from Exercise 2.3.3.1. Are any of the commutative squares there
actually pullback squares?

b.) Now use ologs with products and pullbacks to define what a brother is and what a
sister is (again in a human biological nuclear family), in terms of types such as "an
offspring of mating pair (a,b)”, "a person”, "a male person”, Ta female person”, and
SO on.

¢

Definition 2.5.1.12 (Preimage). Let f: X — Y be a function and y € Y an element.
The preimage of y under f, denoted f~1(y), is the subset f~1(y) := {z € X | f(z) = y}.
If Y/ € Y is any subset, the preimage of Y’ under f, denoted f~'(Y’), is the subset
AV ={zeX | flx)eY'}.

Ezxercise 2.5.1.13. Let f: X — Y be a function and y € Y an element. Draw a pullback
diagram in which the fiber product is isomorphic to the preimage f~1(y). ¢

Lemma 2.5.1.14 (Universal property for pullback). Suppose given the diagram of sets
and functions as below.

b.<

-
S

|
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For any set A and commutative solid arrow diagram as below (i.e. functions f: A - X
and g: A —>Y such thatto f =uog),

XxzY (2.32)

A

|

3!:
™ ‘ T2

|

A
N
X Y
N

A

there exists a unique arrow {f, fYz: A — X xz Y making everything commute, i.e.

f=molfif)z  and  g=molf [z

Exzxercise 2.5.1.15. Create an olog whose underlying shape is a commutative square. Now
add the fiber product so that the shape is the same as that of Diagram (2.32). Assign

English labels to the projections 71,75 and to the dotted map A iz, X xzY, such
that these labels are as canonical as possible. o

2.5.1.16 Pasting diagrams for pullback

Consider the diagram drawn below, which includes a left-hand square, a right-hand
square, and a big rectangle.

The right-hand square has a corner symbol indicating that B’ ~ B x C” is a pullback.
But the corner symbol on the left is ambiguous; it might be indicating that the left-hand
square is a pullback, or it might be indicating that the big rectangle is a pullback. It
turns out that if B’ =~ B x¢ C’ then it is not ambiguous because the left-hand square is
a pullback if and only if the big rectangle is.

Proposition 2.5.1.17. Consider the diagram drawn below
B/ L C/
.
|
where B' =~ B x¢ C’ is a pullback. Then there is an isomorphism A xg B’ =~ A xc C".

Said another way,
Axp(BxcC')~AxcC.
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Proof. We first provide a map ¢: A xp (B x¢ C') > A x¢ C'. An element of A xp
(B x¢ C') is of the form (a,b, (b,c,c')) such that f(a) = b, g(b) = ¢ and k(') = c¢. But
this implies that g o f(a) = ¢ = k() so we put ¢(a,b, (b,¢,c)) = (a,¢,¢') € A xc C'.
Now we provide a proposed inverse, ¢: A xc C' — A x g (B x¢ C"). Given (a, ¢, ') with
go f(a) =c=Ek(c), let b = f(a) and note that (b,c,’) is an element of B xc C’. So we
can define ¢(a, ¢, ) = (a,b, (b,c,c')). Tt is easy to see that ¢ and 1 are inverse.

O

Proposition 2.5.1.17 can be useful in authoring ologs. For example, the type "a
cellphone that has a bad battery™ is vague, but we can lay out precisely what it means
using pullbacks:

A=BxpC CaDXnE ExFxpgG G
a cellphone that ——— less than between 2.33
has a bad battery a bad battery 1 hour 0 and 1 ( )

charged F in hours H

B D
has for a duration | vields_ | a range of
a cellphone | ————— | a battery | —— . —_—
of time numbers

The category-theoretic fact described above says that since A ~ B xp C' and C =~
D x g E, it follows that A =~ B x g E. That is, we can deduce the definition “a cellphone
that has a bad battery is defined as a cellphone that has a battery which remains charged
for less than one hour.”

FExercise 2.5.1.18.

a.) Create an olog that defines two people to be “of approximately the same height” if
and only if their height difference is less than half an inch, using a pullback. Your
olog can include the box "a real number x such that —.5 < < .5™.

b.) In the same olog, make a box for those people whose height is approximately the
same as a person named “The Virgin Mary”. You may need to use images, as in
Section 2.3.3.8.

¢

Ezercise 2.5.1.19. Consider the diagram on the left below, where both squares commute.

/ LS

Y W Y

Y/ W/ Y/

]
anY; S

X——7

Let W =X xzY and W = X’ xz Y’, and form the diagram to the right. Use the
universal property of fiber products to construct a map W — W’ such that all squares
commute. o
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2.5.2 Spans, experiments, and matrices

Definition 2.5.2.1. Given sets A and B, a span on A and B is a set R together with
functions f: R - A and g: R — B.

R
A B
Application 2.5.2.2. Think of A and B as observables and R as a set of experiments
performed on these two variables. For example, let’s say T is the set of possible tem-

peratures of a gas in a fixed container and let’s say P is the set of possible pressures of
the gas. We perform 1000 experiments in which we change and record the temperature

and we simultaneously also record the pressure; this is a span T' L E 9% P. The results
might look like this:

Experiment

ID || Temperature | Pressure
1 100 72

2 100 73

3 100 72

4 200 140

5 200 138

6 200 141

00

Definition 2.5.2.3. Let A, B, and C be sets, and let A L R% Band B J R 7, C
be spans. Their composite span is given by the fiber product R x g R’ as in the diagram
below:

R XpB R/

N
/\/\

Application 2.5.2.4. Let’s look back at our lab’s experiment from Application 2.5.2.2,

which resulted in a span T' L Esp Suppose we notice that something looks a little
wrong. The pressure should be linear in the temperature but it doesn’t appear to be.
We hypothesize that the volume of the container is increasing under pressure. We look
up this container online and see that experiments have been done to measure the volume
as the interior pressure changes. The data has generously been made available online,
which gives us a span P gLy

The composite of our lab’s span with the online data span yields a span T «— E” — V,
where E” := E xp E’. What information does this span give us? In explaining it, one


http://en.wikipedia.org/wiki/Ideal_gas_law
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might say “whenever an experiment in our lab yielded the same pressure as one they
recorded, let’s call that a data point. Every data point has an associated temperature
(from our lab) and an associated volume (from their experiment). This is the best we
can do.”

The information we get this way might be seen by some as unscientific, but it certainly
is the kind of information people use in business and in every day life calculation—we get
our data from multiple sources and put it together. Moreover, it is scientific in the sense
that it is reproducible. The way we obtained our 7-V data is completely transparent.

00

We can relate spans to matrices of natural numbers, and see a natural “categorifica-
tion” of matrix addition and matrix multiplication. If our spans come from experiments
as in Applications 2.5.2.2 and 2.5.2.4 the matrices involved will look like huge but sparse
matrices. Let’s go through that.

Let A and B be sets and let A < R — B be a span. By the universal property of
products, we have a unique map R - A x B.

We make a matrix of natural numbers out of this data as follows. The set of rows
is A, the set of columns is B. For elements a € A and b € B, the (a,b)-entry is the
cardinality of its preimage, |p~!(a,b)|, i.e. the number of elements in R that are sent by
p to (a,b).

Suppose we are given two (A4, B)-spans, i.e. A — R — Band A «— R’ — B; we might
think of these has having the same dimensions, i.e. they are both |A| x |B|-matrices.
We can take the disjoint union R 1 R’ and by the universal property of coproducts we
have a unique span A « R U R’ — B making the requisite diagram commute. 13 The
matrix corresponding to this new span will be the sum of the matrices corresponding to
the two previous spans out of which it was made.

Given a span A «— R — B and aspan B <« S — C, the composite span can be formed
as in Definition 2.5.2.3. It will correspond to the usual multiplication of matrices.

Construction 2.5.2.5. Given a span A LIRS B, one can draw a bipartite graph with
each element of A drawn as a dot on the left, each element of B drawn as a dot on the
right, and each element r € R drawn as an arrow connecting vertex f(r) on the left to
vertex g(r) on the right.

FEzxercise 2.5.2.6.

a.) Draw the bipartite graph (as in Construction 2.5.2.5) corresponding to the span
7 <L B % Pin Application 2.5.2.2.

b.) Now make up your own span P LB 2 v and draw it. Finally, draw the composite
span below.

c.) Can you say how the composite span graph relates to the graphs of its factors?

13
R

SN

A<——RuR ——B

AN

R/
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o
2.5.3 Equalizers and terminal objects
Definition 2.5.3.1. Suppose given two parallel arrows
f » f
X—zY. Eq(f,g) —X—=xY (2.34)
g g

The equalizer of f and g is the commutative diagram as to the right in (2.34), where we
define

Eq(f,9) ={ze X | f(z) = g(x)}

and where p is the canonical inclusion.

Ezxample 2.5.3.2. Suppose one has designed an experiment to test a theoretical prediction.
The question becomes, “when does the theory match the experiment?” The answer is
given by the equalizer of the following diagram:

should, according to theory, yield

according to experiment yields

The equalizer is the set of all inputs for which the theory and the experiment yield the
same output.

Ezercise 2.5.3.3. Come up with an olog that uses equalizers in a reasonably interest-
ing way. Alternatively, use an equalizer to specify those published authors who have
published exactly one paper. Hint: find a function from authors to papers; then find
another. O

Ezercise 2.5.3.4. Find a universal property enjoyed by the equalizer of two arrows, and
present it in the style of Lemmas 2.4.1.10, 2.4.2.7, and 2.5.1.14. O

FExercise 2.5.3.5.

a.) A terminal set is a set S such that for every set X, there exists a unique function
X — S. Find a terminal set.

b.) Do you think that the notion terminal set belongs in this section (Section 2.5)? How
so? If products, pullbacks, and equalizers are all limits, what do limits have in
common?

2.6 Finite colimits in Set

This section will parallel Section 2.5—I will introduce several types of finite colimits and
hope that this gives the reader some intuition about them, without formally defining
them yet. Before doing so, I must define equivalence relations and quotients.



50 CHAPTER 2. THE CATEGORY OF SETS

2.6.1 Background: equivalence relations

Definition 2.6.1.1 (Equivalence relations and equivalence classes). Let X be a set. An
equivalence relation on X is a subset R € X x X satisfying the following properties for
all z,y,z € X:

Reflexivity: (z,z) € R;
Symmetry: (z,y) € R if and only if (y,z) € R; and
Transitivity: if (z,y) € R and (y, 2) € R then (z,z) € R.

If R is an equivalence relation, we often write  ~ g y, or simply « ~ y, to mean (z,y) € R.
For convenience we may refer to the equivalence relation by the symbol ~, saying that
~ is an equivalence relation on X.

An equivalence class of ~ is a subset A € X such that

e A is nonempty, A # ;
e if re Aand 2’ € A, then x ~ z’; and
e if re Aand x ~ y, then y € A.

Suppose that ~ is an equivalence relation on X. The quotient of X by ~, denoted X/ ~
is the set of equivalence classes of ~.

Example 2.6.1.2. Let Z denote the set of integers. Define a relation R € Z x Z by
R = {(z,y) | In € Z such that = + Tn = y}.

Then R is an equivalence relation because x + 7 %0 = x (reflexivity); © + 7+ n = y if and
only if y + 7% (—n) = = (symmetry); and z + Tn = y and y + 7m = z together imply
that z + 7(m + n) = z (transitivity).

Exercise 2.6.1.3. Let X be the set of people on earth; define a binary relation R € X x X
on X as follows. For a pair (z,y) of people, say (z,y) € R if x spends a lot of time thinking
about y.

a.) Is this relation reflexive?
b.) Is it symmetric?

c.) Is it transitive?

¢

Ezample 2.6.1.4 (Partitions). An equivalence relation on a set X can be thought of as a
way of partitioning X. A partition of X consists of a set I, called the set of parts, and
for every element i € I a subset X; € X such that two properties hold:

e cvery element z € X is in some part (i.e. for all x € X there exists ¢ € I such that
z € X;); and

e no clement can be found in two different parts (i.e. if x € X; and z € X; then
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Given a partition of X, we define an equivalence relation ~ on X by saying z ~ z’
if # and 2’ are in the same part (i.e. if there exists ¢ € I such that z,2’ € X;). The
parts become the equivalence classes of this relation. Conversely, given an equivalence
relation, one makes a partition on X by taking I to be the set of equivalence classes and
for each 7 € I letting X; be the elements in that equivalence class.

Exercise 2.6.1.5. Let X and B be sets and let f: X — B be a function. Define a subset
Rc X x X by

R=A{(z,y) | f(z) = f(y)}-
a.) Is R an equivalence relation?

b.) Are all equivalence relations on X obtainable in this way (as the fibers of some
function having domain X)?

c.) Does this viewpoint on equivalence classes relate to that of Example 2.6.1.47

¢

Exercise 2.6.1.6. Take a set I of sets; i.e. suppose that for each element i € I you are
given a set X;. For every two elements i, j € I say that i ~ j if X; and X are isomorphic.
Is this relation an equivalence relation on I7 o

Lemma 2.6.1.7 (Generating equivalence relations). Let X be a set and RS X x X a
subset. There exists a relation S € X x X such that

e S is an equivalence relation,

e Rc S, and

e for any equivalence relation S’ such that R < S’, we have S < §".
The relation S’ will be called the equivalence relation generated by R.

Proof. Let L be the set of all equivalence relations on X that contain R; in other words,
each element ¢ € Ly is an equivalence relation, £ € X x X. The set Lr is non-empty
because X x X € X x X is an equivalence relation. Let S denote the set of pairs
(z1,22) € X x X that appear in every element of Lr. Note that R < S by definition.
We need only show that S is an equivalence relation.

It is clearly reflexive, because R is. If (z,y) € S then (x,y) € £ for all £ € Lg. But
since each ¢ is an equivalence relation, (y,x) € £ too, so (y,x) € S. This shows that S
is symmetric. The proof that it is transitive is similar: if (x,y) € S and (y, z) € S then
they are both in each ¢ which puts (z, z) in each ¢, which puts it in S.

[m}

Remark 2.6.1.8. Let X be a set and R € X x X a relation. The proof of Lemma 2.6.1.7
has the benefit of working even if | X| > oo, but it has the cost that it is not very intuitive,
nor useful in practice when X is finite. The intuitive way to think about the idea of
equivalence relation generated by R is as follows.

1. First add to R what is demanded by reflexivity, Ry := Ru {(z,2) | v € X}.
2. Then add to R what is demanded by symmetry, Ry := Ry u {(z,y) | (y,z) € R1}.
3. Finally, add to R what is demanded by transitivity,

S=Ryu{(z,2) | (z,y) € Ry, and (y, 2z) € Ra}.
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Ezercise 2.6.1.9. Consider the set R of real numbers. Draw the coordinate plane R x R,
give it coordinates z and y. A binary relation on R is a subset S € R x R, which can be
drawn as a set of points in the plane.

a.) Draw the relation {(z,y) | y = 2?}.

b.) Draw the relation {(x,y) | vy = 2?}.

c.) Let Sy be the equivalence relation on R generated (in the sense of Lemma 2.6.1.7)
by the empty set. Draw S as a subset of the plane.

d.) Consider the equivalence relation S; generated by {(1,2),(1,3)}. Draw S; in the
plane. Highlight the equivalence class containing (1, 2).

e.) The reflexivity property and the symmetry property have pleasing visualizations in
R x R; what are they?

f.) Is there a nice heuristic for visualizing the transitivity property?

o
Ezercise 2.6.1.10. Consider the binary relation R = {(n,n+1) |[n€Z} € Z x Z.
a.) What is the equivalence relation generated by R?
b.) How many equivalence classes are there?

¢

Ezercise 2.6.1.11. Suppose N is a network (or graph). Let X be the nodes of the network,
and let R € X x X denote the relation such that (z,y) € R iff there exists an arrow
connecting x to y. 14

a.) What is the equivalence relation ~ generated by R?
b.) What is the quotient X/ ~?

2.6.2 Pushouts

Definition 2.6.2.1 (Pushout). Suppose given the diagram of sets and functions below:

WL x (2.35)

]

Y

Its fiber sum, denoted X Ly Y, is defined as the quotient of X W LY by the equivalence
relation ~ generated by w ~ f(w) and w ~ g(w) for all w e W.

XuwY =XuWuY)/ ~ where Vw e W, w ~ f(w) and w ~ g(w).

MThe word iff means “if and only if”. In this case we are saying that the pair (z,y) is in R if and
only if there exists an arrow connecting x and y.
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There are obvious inclusions i1: X — X uw Y and i9: Y — X uw Y. 12 Note that if
Z = X uw Y then the diagram

W ——

(2.36)

g
r

<~
N<—X

X ——>

11

commutes. Given the setup of Diagram 2.35 we define the pushout of X and Y over W
to be any set Z for which we have an isomorphism Z = X Ly Y. The corner symbol
T in Diagram 2.36 indicates that Z is the pushout.

Ezample 2.6.2.2. Let X = {x e R| 0 < a2 < 1} be the set of numbers between 0 and 1,
inclusive, let Y = {y e R| 1 < y < 2} by the set of numbers between 1 and 2, inclusive,

and let W = {1}. Then the pushout X Lws Y, where f and g are the “obvious”
functions (1 — 1) is X uw ¥ = {z e R| 0 < z < 2}, as expected. When we eventually
get to general colimits, one can check that the whole real line can be made by patching
together intervals in this way.

Ezample 2.6.2.3 (Pushout). In each example below, the diagram to the right is intended
to be a pushout of the diagram to the left. The new object, D, is the union of B and
C, but instances of A are equated to their B and C aspects. This will be discussed after
the two diagrams.

A C A C

acellinthe| is |a cell in a cell in the is a cell in (2.37)
s s .
shoulder the arm shoulder the arm
isl isl

B B D=BusC

a cell in the a cell in the a cell in the
—_—

torso torso torso or arm

In the left-hand olog (2.37, the two arrows are inclusions: the author considers every cell
in the shoulder to be both in the arm and in the torso. The pushout is then just the
union, where cells in the shoulder are not double-counted.

15Note that our term inclusions is not too good, because it seems to suggest that i1 and iz are injective
(see Definition 2.7.5.1) and this is not always the case.
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A c A c
a college . an utterance a college . an utterance
. yields . yields
mathematics |— | of the phrase mathematics | —— | of the phrase
course “too hard” course “too hard”
is\L
D =BuyC
B . 4
1s a college course,
a college
where every
course )
B mathematics
a college course is
e
course replaced by an
utterance of the
phrase “too
hard”

(2.38)

In Olog (2.37), the shoulder is seen as part of the arm and part of the torso. When
taking the union of these two parts, we do not want to “double-count” the shoulder (as
would be done in the coproduct B u C, see Example 2.4.2.12). Thus we create a new
type A for cells in the shoulder, which are considered the same whether viewed as cells in
the arm or cells in the torso. In general, if one wishes to take two things and glue them
together, with A as the glue and with B and C' as the two things to be glued, the union
is the pushout B 14 C. (A nice image of this can be seen in the setting of topological
spaces, see Example 4.5.3.30.)

In Olog (2.38), if every mathematics course is simply “too hard,” then when reading
off a list of courses, each math course will not be read aloud but simply read as “too
hard.” To form D we begin by taking the union of B and C, and then we consider
everything in A to be the same whether one looks at it as a course or as the phrase “too
hard.” The math courses are all blurred together as one thing. Thus we see that the
power to equate different things can be exercised with pushouts.

Ezercise 2.6.2.4. Let W, XY be asdrawn and f: W — X and g: W — Y the indicated

functions.
X Y

The pushout of the diagram X W 9V isaset P. Write down the cardinality
of P ~ n as a natural number n € N. ¢
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Ezercise 2.6.2.5. Suppose that W = J; what can you say about X uy Z7 o

Ezercise 2.6.2.6. Let W :=N = {0, 1,2, ...} denote the set of natural numbers, let X = Z
denote the set of integers, and let Y = {©} denote a one-element set. Define f: W — X
by f(w) = —(w + 1), and define g: W — Y to be the unique map. Describe the set
X Uw Y. o

Ezercise 2.6.2.7. Let i: R € X x X be an equivalence relation (see Example 2.1.2.3
for notation). Composing with the projections m,m2: X x X — X, we have two maps
moi,: R—>Xand myoi: R — X.

a.) What is the pushout
X w101 R 0% X2

b.) Ifi: R € X x X is not assumed to be an equivalence relation, we can still define the
T10% T 0%

pushout above. Is there a relationship between the pushout X «—— R —— X and

the equivalence relation generated by R € X x X7
o

Lemma 2.6.2.8 (Universal property for pushout). Suppose given the diagram of sets
and functions as below.

W—Ls>Y

{

X

For any set A and commutative solid arrow diagram as below (i.e. functions f: X — A

and g: Y — A such that fot=gou),
A/
A
I
\
\
I
I

XI_IWy

(2.39)

//\

there exists a unique arrow {é : X uw Y — A making everything commute,
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2.6.3 Other finite colimits

Definition 2.6.3.1. [Coequalizer]
Suppose given two parallel arrows

f f
X—=vV. X —=VY —L5 Coeq(f,9) (2.40)
9 9

The coequalizer of f and g is the commutative diagram as to the right in (2.40), where
we define

Coeq(f,9) ==Y / f(x) ~ g(x)

i.e. the coequalizer of f and g is the quotient of Y by the equivalence relation generated
by {(f(z),9(x)) |[ze X} <Y xV

Ezercise 2.6.3.2. Let X = R be the set of real numbers. What is the coequalizer of the
two maps X — X given by  — x and z — (z + 1) respectively? O
Ezercise 2.6.3.3. Find a universal property enjoyed by the coequalizer of two arrows. ¢
Ezercise 2.6.3.4 (Initial object). An initial set is a set .S such that for every set A, there
exists a unique function S — A.

a.) Find an initial set.

b.) Do you think that the notion énitial set belongs in this section (Section 2.6)7 How
so? If coproducts, pushouts, and coequalizers are all colimits, what do colimits have
in common?

2.7 Other notions in Set

In this section we discuss some left-over notions in the category of Sets.

2.7.1 Retractions

Definition 2.7.1.1. Suppose we have a function f: X — Y and a function g: ¥ - X
such that g o f = idx. In this case we call f a retract section and we call g a retract
projection.

Ezxercise 2.7.1.2. Create an olog that includes sets X and Y, and functions f: X — Y
and ¢g: Y — X such that go f = idx but such that f og # idy; that is, such that f is a
retract section but not an isomorphism. ¢

2.7.2 Currying

Currying is the idea that when a function takes many inputs, we can input them one at
a time or all at once. For example, consider the function that takes a material M and
an extension F and returns the force transmitted through the material when it is pulled
to that extension. This is a function e: "a material? x "an extension™ — "a force™. This
function takes two inputs at once, but it is convenient to “curry” the second input. Recall
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that Homget("an extension?, Ta force™) is the set of theoretical force-extension curves.
Currying transforms e into a function

r.r

e’: "a material” — Homget (Tan extension™, "a force™).

This is a more convenient way to package the same information.

In fact, it may be convenient to repackage this information another way. For any
extension, we may want the function that takes a material and returns how much force
it can transmit at that extension. This is a function

", r

e’ : Tan extension™ — Homget (Ta material™, Ta force?).

Notation 2.7.2.1. Let A and B be sets. We sometimes denote the set of functions from
A to B by

B4 := Homget (A, B). (2.41)

Ezercise 2.7.2.2. For a finite set A, let |A| € N denote the cardinality of (number of
elements in) A. If A and B are both finite (including the possibility that one or both
are empty), is it always true that |B4| = |B|AI? 0

Proposition 2.7.2.3 (Currying). Let A denote a set. For any sets X,Y there is a
bijection
¢: Homget (X x A,Y) = Homget (X, Y4). (2.42)

Proof. Suppose given f: X x A — Y. Define ¢(f): X — Y4 as follows: for any z € X
let ¢(f)(z): A — Y be defined as follows: for any a € A, let ¢(f)(z)(a) := f(z,a).

We now construct the inverse, 1/: Homget (X, Y#) — Homgey (X x A,Y). Suppose
given g: X — Y4, Define ¥(g): X x A — Y as follows: for any pair (z,a) € X x A let

¥(9)(z,a) := g(x)(a).
Then for any f € HomSQt(X x A,Y) we have v o ¢(f)(z,a) = ¢(f)(x)(a) = f(z,a),

and for any g € Homges (X, V) we have ¢ ov(g)(x)(a) = ¢(g)(x,a) = g(x)(a), Thus we
see that ¢ is an isomorphism as desired.

|
Ezercise 2.7.2.4. Let X = {1,2}, A = {a,b}, and Y = {z, y}.
a.) Write down three distinct elements of L := Homget (X x A,Y).
b.) Write down all the elements of M := Homget(A,Y).

c.) For each of the three elements £ € L you chose in part (a), write down the corre-
sponding function ¢(¢): X — M guaranteed by Proposition 2.7.2.3.
¢

Erercise 2.7.2.5. Let A and B be sets. We know that Homget(4, B) = B4, so we
have a function idga: Homset(A, B) — B“. Look at Proposition 2.7.2.3, kmg the
substitutions X = Homget(A, B), Y = B, and A = A. Consider the function

¢! Homget (Homget (A, B), BA) — Homget (Homget (A, B) x A, B)

obtained as the inverse of (2.42). We have a canonical element idga in the domain
of =1. We can apply the function ¢! and obtain an element ev = ¢~ !(idga) €
Homget (Homget (A, B) x A, B), which is itself a function,

ev: Homget (A, B) x A — B.
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a.) Describe the function ev in terms of how it operates on elements in its domain.

b.) Why might one be tempted to denote this function by ev?

¢
If n € N is a natural number, recall from (2.6) that there is a nice set n = {1,2,...,n}.

If A is a set, we often make the abbreviation
A" = AT, (2.43)

Exercise 2.7.2.6. In Example 2.4.1.7 we said that R? is an abbreviation for R x R, but

in (2.43) we say that R? is an abbreviation for RZ. Use Exercise 2.1.2.14, Proposition

2.7.2.3, Exercise 2.4.2.10, and the fact that 1+1=2, to prove that these are isomorphic,
RZ >R xR.

(The answer to Exercise 2.1.2.14 was A = {®}: i.e. Homget({@}, X) = X for all X.)

o

2.7.3 Arithmetic of sets

Proposition 2.7.3.1 summarizes the properties of products, coproducts, and exponentials,
and shows them all in a familiar light, namely that of arithmetic. In fact, one can think
of the natural numbers as literally being the isomorphism classes of finite sets—that’s
what they are used for in counting. Consider the standard procedure for counting the
elements of a set S, say cows in a field: one points to an element in S and simultaneously
says “1”, points to another element in S and simultaneously says “2”, and so on until
finished. This procedure amounts to nothing more than creating an isomorphism (one-
to-one mapping) between S and some set n.

Again, the natural numbers are the isomorphism classes of finite sets. Their behavior,
i.e. the arithmetic of natural numbers, reflects the behavior of sets. For example the fact
that multiplication distributes over addition is a fact about grids of dots as in Example
2.4.1.2. The following proposition lays out such arithmetic properties of sets.

In this proposition, we denote the coproduct of two sets A and B by the notation
A + B rather than A 1 B. It is a reasonable notation in general, and one that is often
used.

Proposition 2.7.3.1. The following isomorphisms exist for any sets A, B, and C' (except
for one caveat, see Ezxercise 2.7.3.2).

e A+0xA

e A+B=B+ A

e (A+B)+C=A+(B+C)

e Ax0=~0

e Ax1x~A

e AxB=BxA

e (AxB)xC=Ax(BxC()

e Ax(B+C)=(AxB)+(AxC)
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Exercise 2.7.3.2. Everything in Proposition 2.7.3.1 is true except in one case, namely
that of

0%.

In this case, we get conflicting answers, because for any set A, including A = & = 0, we
have claimed both that A2 ~ 1 and that 04 ~ 0.

What is the correct answer for 02, based on the definitions of 0 and 1, given in (2.6),
and of AP given in (2.41)? o

Ezercise 2.7.3.3. It is also true of natural numbers that if a,b € N and ab = 0 then either
a =0 or b= 0. Is the analogous statement true of all sets? O

Proposition 2.7.3.1 is in some sense about isomorphisms. It says that understanding
isomorphisms of sets reduces to understanding natural numbers. But note that there is
much more going on in Set than isomorphisms; in particular there are functions that
are not invertible.

In grade school you probably never saw anything that looked like this:

5 x3—5

And yet in Exercise 2.7.2.5 we found a function ev: B4 x A — B that exists for any
sets A, B. This function ev is not an isomorphism so it somehow does not show up as
an equation of natural numbers. But it still has important meaning. 1% In terms of

mere number, it looks like we are being told of an important function 575 — 5, which is
bizarre. The issue here is precisely the one you confronted in Exercise 2.1.2.13.

Ezxercise 2.7.3.4. Explain why there is a canonical function 52 x 3 — 5 but not a
canonical function 575 — 5. o

Slogan 2.7.3.5.

“ It is true that a set is isomorphic to any other set with the same number
of elements, but don’t be fooled into thinking that the study of sets reduces
to the study of numbers. Functions that are not isomorphisms cannot be
captured within the framework of numbers. ”

16Roughly, the existence of ev: 52 x 3 —> 5 says that given a dot in a 5 x 5 x 5 grid of dots, and given
one of the three axes, you can tell me the coordinate of that dot along that axis.
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2.7.4 Subobjects and characteristic functions

Definition 2.7.4.1. For any set B, define the power set of B, denoted P(B), to be the
set of subsets of B.

FExercise 2.7.4.2.

How many elements does P() have?

a.)

b.) How many elements does P({©}) have?

c.) How many elements does P({1,2,3,4,5,6}) have?
a,)

Any idea why they may have named it “power set”?

2.7.4.3 Simplicial complexes

Definition 2.7.4.4. Let V be a set and let P(V') be its powerset. A subset X < P(V)
is called downward-closed if, for every v € X and every v’ € u, we have v’ € X. We say
that X contains all atoms if for every v € V' the singleton set {v} is an element of X.

A simplicial complex is a pair (V, X) where V is a set and X < P(V) is a downward-
closed subset that contains all atoms. The elements of X are called simplices (singular:
simplex). Any subset u € V has a cardinality |u|, so we have a function X — N sending
each simplex to its cardinality. The set of simplices with cardinality n + 1 is denoted X,
and each element x € X, is called an n-simpler. 17 Since X contains all atoms (subsets
of cardinality 1), we have Xy =~ V, and we may also call the O-simplices vertices. We
sometimes call the 1-simplices edges. &

Since Xy = V', we may denote a simplicial complex (V, X) simply by X.

Ezample 2.7.4.5. Let n € N be a natural number and let V' = n + 1. Define the n-simplex,
denoted A™, to be the simplicial complex P(V) € P(V), i.e. the whole power set, which
indeed is downward-closed and contains all atoms.

We can draw a simplicial complex X by first putting all the vertices on the page as
dots. Then for every = € X1, we see that = {v,v'} consists of 2 vertices, so we draw
an edge connecting v and v'. For every y € X5 we see that y = {w,w’,w”} consists of 3
vertices, so we draw a (filled-in) triangle connecting them. All three edges will be drawn
too because X is assumed to be downward closed.

Thus, the 0-simplex A, the 1-simplex A!, the 2-simplex A2, and the 3-simplex A3
are drawn here:

¢ & * J 1

2
I 3
0 1
17Tt is annoying at first that the set of subsets with cardinality 1 is denoted Xg, etc. But this is
standard convention because as we will see, X,, will be n-dimensional.
18The reason we wrote Xo 2 V rather than Xy = V is that X is the set of 1-element subsets of V.
So if V = {a, b, c} then Xo = {{a}, {b}, {c}}. This is really just pedantry.
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The n-simplices for various n’s are in no way all of the simplicial complexes. In
general a simplicial complex is a union or “gluing together” of simplices in a prescribed
manner. For example, consider the simplicial complex X with vertices X = {1, 2, 3,4},
edges X7 = {{1,2},{2,3},{2,4}}, and no higher simplices Xo = X3 = --- = J. We
might draw X as follows:

1 2 3
° °

4
°

Ezercise 2.7.4.6. Let X be the following simplicial complex, so that Xg = {A, B, ..., M}.

In this case X consists of elements like {4, B} and {D, K} but not {D, J}.

Write out X5 and X3 (hint: the drawing of X indicates that X3 should have one
element). o
Exercise 2.7.4.7. The 2-simplex A? is drawn as a filled-in triangle with vertices V =

{1,2,3}. There is a simplicial complex X = 0A? that would be drawn as an empty
triangle with the same set of vertices.

a.) Draw A% and X side by side and make clear the difference.

b.) Write down the data for X as a simplicial complex. In other words what are the sets
X07X17X27X3a i

2.7.4.8 Subobject classifier

Definition 2.7.4.9. Define the subobject classifier for Set, denoted (2, to be the set
O := {True, False}, together with the function {®} — Q sending the unique element to
True.
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Proposition 2.7.4.10. Let B be a set. There is an isomorphism
¢: Homget (B, Q) = P(B).

Proof. Given a function f: B — , let ¢(f) = {b € B| f(b) = True} < B. We now
construct a function : P(B) — Homget(B,2) to serve as the inverse of ¢. Given a
subset B’ € B, define ¢(B’): B — Q as follows:

True ifbe B,

vE)() = {False ifbhe¢ B.

One checks easily that ¢ and ¥ are mutually inverse.
O

Definition 2.7.4.11 (Characteristic function). Given a subset B’ € B, we call the
corresponding function B — Q the characteristic function of B’ in B.

Let B be any set and let P(B) be its power set. By Proposition 2.7.4.10 there is a
bijection between P(B) and Q. Since Q has cardinality 2, the cardinality of P(B) is
218! which explains the correct answer to Exercise 2.7.4.2.

Exercise 2.7.4.12. Let f: A — Q denote the characteristic function of some A’ = A, and
define A” = A to be its complement, A” := A — A’ (i.e. a€ A” if and only if a ¢ A').

a.) What is the characteristic function of A” < A?

b.) Can you phrase it in terms of some function  — Q7

2.7.5 Surjections, injections

The classical definition of injections and surjections involves elements, which we give now.
But a more robust notion involves all maps and will be given in Proposition 2.7.5.4.

Definition 2.7.5.1. Let f: X — Y be a function. We say that f is surjective if, for all
y € Y there exists some x € X such that f(x) = y. We say that [ is injective if, for all
z € X and all 2’ € X with f(x) = f(2') we have z = a'.

A function that is both injective and surjective is called bijective.

Remark 2.7.5.2. It turns out that a function that is bijective is always an isomorphism
and that all isomorphisms are bijective. We will not show that here, but it is not too
hard; see for example [Big, Theorem 5.4].

Definition 2.7.5.3 (Monomorphisms, epimorphisms). Let f: X — Y be a function.
We say that f is a monomorphism if for all sets A and pairs of functions g,¢': A — X,

g
VY !
A X ——Y
N7

if fog=fog theng=g'.
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We say that f is an epimorphism if for all sets B and pairs of functions h,h': Y — B,

h
f N\
X ——Y B
A4
h/

ifhof="hofthen h="n.

Proposition 2.7.5.4. Let f: X — Y be a function. Then f is injective if and only if
it is @ monomorphism; f is surjective if and only if it is an epimorphism.

Proof. If f is a monomorphism it is clearly injective by putting A = {®}. Suppose that
f is injective and let g,¢’: A — X be functions such that fog = fog’, but suppose for
contradiction that g # ¢’. Then there is some element a € A such g(a) # ¢'(a) € X. But
by injectivity f(g(a)) # f(g'(a)), contradicting fog = fog'.
Suppose that f: X — Y is an epimorphism and choose some yy € Y (noting that if
Y is empty then the claim is vacuously true). Let h: Y — Q denote the characteristic
function of the subset {yo} < Y and let h': Y — Q denote the characteristic function
of @& € Y; note that h(y) = h'(y) for all y # yo. Then since f is an epimorphism and
h # I/, we must have ho f # h'o f, so there exists x € X with h(f(z)) # h/(f(x)), which
implies that f(z) = yo. This proves that f is surjective.
Finally, suppose that f is surjective, and let h, h': Y — B be functions with ho f =
h o f. For any y € Y, there exists some x € X with f(z) = y, so h(y) = h(f(z)) =
W (f(z)) = W (y). This proves that f is an epimorphism.
O

Proposition 2.7.5.5. Let f: X — Y be a monomorphism. Then for any function
g: A—Y, the top map f': X xy A — A in the diagram

XXyAfHA

X —

!
is a monomorphism.

Proof. To show that f’ is a monomorphism, we take an arbitrary set B and two maps
m,n: B — X xy A such that f'om = f’on, denote that function by p := f'om: B — A.
Now let ¢ = ¢’ om and r = ¢’ on. The diagram looks like this:

We have that

foq=fogom=gofom=gofon=fogon=for
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But we assumed that f is a monomorphism so this implies that ¢ = r. By the universal
property of pullbacks, Lemma 2.5.1.14, we have m = n.
O

Ezxercise 2.7.5.6. Show, in analogy to Proposition 2.7.5.5, that pushouts preserve epi-
morphisms. o

Ezxample 2.7.5.7. Suppose an olog has a fiber product square

Xx, ¥ 2ov

f 'J{ J{f
such that f is intended to be an injection and g is any map. 12 In this case, there are
nice labeling systems for f/,¢’, and X x 7 Y. Namely:

[13- 9=

e “is” is an appropriate label for f’,
e the label for g is an appropriate label for ¢/,

e (the label for X, then “which”, then the label for g, then the label for Y) is an
appropriate label for X x Y.

To give an explicit example,

XXZY

a rib which is is made by
ety

made by a cow

; )

X Z

a rib - an animal
is made by

Corollary 2.7.5.8. Leti: A — X be a monomorphism. Then there is a fiber product
square of the form

e} (2.44)

A @)

.
zl iTrue
X

— Q.
f
Proof. Let X’ € X denote the image of ¢ and let f: X — Q denote the characteristic
function of X’ € X. Then it is easy to check that Diagram 2.44 is a pullback.
O

Ezercise 2.7.5.9. Consider the subobject classifier 2, the singleton {®} and the map
{©} Lrue, O from Definition 2.7.4.9. Look at diagram 2.44 and in the spirit of Exercise
2.7.5.7, come up with a label for 2, a label for {©}, and a label for True. Given a label
for X and a label for f, come up with a label for A, a label for 7 and a label for f/, such
that the English smoothly fits the mathematics. O

90f course, this diagram is symmetrical, so the same ideas hold if g is an injection and f is any map.
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2.7.6 Multisets, relative sets, and set-indexed sets

In this section we prepare ourselves for considering categories other than Set, by looking
at some categories related to Set.

2.7.6.1 Multisets

Consider the set X of words in a given document. If WC(X) is the wordcount of the
document, we will not generally have WC(X) = |X|. The reason is that a set cannot
contain the same element more than once, so words like “the” might be undercounted in
|X|. A multiset is a set in which elements can be assigned a multiplicity, i.e. a number
of times they are to be counted.

But if X and Y are multisets, what is the appropriate type of mapping from X
to Y? Since every set is a multiset (in which each element has multiplicity 1), let’s
restrict ourselves to notions of mapping that agree with the usual one on sets. That
is, if multisets X and Y happen to be sets then our mappings X — Y should just be
functions.

FExercise 2.7.6.2.

a.) Come up with some notion of mapping for multisets that generalizes functions when
the notion is restricted to sets.

b.) Suppose that X = (1,1,2,3) and Y = (a,b,b,b), i.e. X = {1,2,3} with 1 having
multiplicity 2, and Y = {a, b} with b having multiplicity 3. What are all the maps
X — Y in your notion?

¢

In Chapter 4 we will be getting to the definition of category, and you can test whether
your notion of mapping in fact defines a category. Here is my definition of mapping for
multisets.

Definition 2.7.6.3. A multiset is a sequence X := (F, B, ) where E and B are sets
and m: E — B is a surjective function. We refer to E as the set of element instances
of X, we refer to B as the set of element names of X, and we refer to 7 as the naming
function for X. Given an element name x € B, let 7—1(x) € E be the preimage; the
number of elements in 7! (z) is called the multiplicity of x.

Suppose that X = (E,B,7) and X' = (E', B’,n’) are multisets. A mapping from
X to Y, denoted f: X — Y, consists of a pair (f1, fo) such that f;: E — E’ and
fo: B — B’ are functions and such that the following diagram commutes:

E-l (2.45)

Ezercise 2.7.6.4. Suppose that a pseudo-multiset is defined to be almost the same as a
multiset, except that 7 is not required to be surjective.

a.) Write down a pseudo-multiset that is not a multi-set.

b.) Describe the difference between the two notions in terms of multiplicities.
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c.) Complexity of names aside, which do you think is a more useful notion: multiset or
pseudo-multisets?

Ezercise 2.7.6.5. Consider the multisets described in Exercise 2.7.6.2.

a.) Write each of them in the form (E, B,7), as in Definition 2.7.6.3.

b.) In terms of the same definition, what are the mappings X — Y?

c.) If we remove the restriction that diagram 2.45 must commute, how many mappings
X — Y are there?

2.7.6.6 Relative sets

Let’s continue with our ideas from multisets, but now suppose that we have a fixed set B
of names that we want to keep once and for all. Whenever someone discusses a set, each
element must have a name in B. And whenever someone discusses a mapping, it must
preserve the names. For example, if B is the set of English words, then every document
consists of an ordered set mapping to B (e.g. 1 — Suppose, 2 — that,3 — we, etc.) A
mapping from document A to document B would send each word found somewhere in
A to the same word found somewhere in B. This notion is defined carefully below.

Definition 2.7.6.7 (Relative set). Let B be a set. A relative set over B, or simply a
set over B, is a pair (E, ) such that F is a set and 7: F — B is a function. A mapping
of relative sets over B, denoted f: (E,w) — (E’, '), is a function f: E — E’ such that
the triangle below commutes, i.e. 7 =7’ o f,

f

E——F
B

Exzercise 2.7.6.8. Given sets X,Y, Z and functions f: X — Y and g: Y — Z, we can
compose them to get a function X — Z. If B is a set, if (X,p), (Y,q), and (Z,r) are
relative sets over B, and if f: (X,p) — (Y,q) and g: (Y,q) — (Z,r) are mappings, is
there a reasonable notion of composition such that we get a mapping of relative sets
(X,p) — (Z,r)? Hint: draw diagrams. 0
FExercise 2.7.6.9.

a.) Let {©} denote a set with one element. What is the difference between sets over {©}
and simply sets?

b.) Describe the sets relative to ¢§. How many are there?

2.7.6.10 Indexed sets

Let A be a set. Suppose we want to assign to each element a € A a set S,. This is called
an A-indexed set. In category theory we are always interested in the legal mappings
between two different structures of the same sort, so we need a notion of A-indexed
mappings; we do the “obvious thing”.
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Example 2.7.6.11. Let C be a set of classrooms. For each ¢ € C' let P. denote the set of
people in classroom ¢, and let S, denote the set of seats (chairs) in classroom c¢. Then P
and S are C-indexed sets. The appropriate kind of mapping between them respects the
indexes. That is, a mapping of multi-sets P — S should, for each classroom c e C, be a
function P, — S,.2%

Definition 2.7.6.12. Let A be a set. An A-indexed set is a collection of sets S,, one for
each element a € A; for now we denote this by (Sg)aca- If (S))aca is another A-indexed
set, a mapping of A-indexed sets from (Sg)aeca to (S,)aca, denoted

(fa)aEA: (Sa)aEA - (Sfl)aeA
is a collection of functions f,: S, — S., one for each element a € A.

Ezercise 2.7.6.13. Let {©®} denote a one element set. What are {®}-indexed sets and
mappings between them? o

Exercise 2.7.6.14. There is a strong relationship between A-indexed sets and relative sets
over A. What is it? o

201f we wanted to allow people from any classroom to choose a chair from just any classroom, category
theory would tell us to reconsider P and S as sets, forgetting their indices. See Section 5.1.4.7.
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