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Defining Volatility

Basic Definition
@ Annualized standard deviation of the change in price or value

of a financial security.

Estimation/Prediction Approaches

Historical /sample volatility measures.
Geometric Brownian Motion Model
Poisson Jump Diffusion Model
ARCH/GARCH Models

Stochastic Volatility (SV) Models

Implied volatility from options/derivatives
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Historical Volatility

Computing volatility from historical series of actual prices
@ Prices of an asset at (T + 1) time points
{P,t=0,1,2,..., T}
@ Returns of the asset for T time periods
R: = log(P¢/Pi—1),t=1,2,..., T
e {R:} assumed covariance stationary with
o = y/var(Re) = \/E[(R: — E[R:])?]
with sample estimate:
6=/ LR — R with R= 2 S R,
@ Annualized values

2525 (daily prices for 252 business days/year)
vol = V525  (weekly prices)
V126 (monthly prices)
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Definition For time period t, define the sample volatility
6+= sample standard deviation of period t returns

@ If t indexes months with daily data, then &; is the sample standard deviation of
daily returns in month t.

@ If t indexes days with daily data, then 62 = R?.
@ With high-frequency data, daily o is derlved from cumulating squared intra-day
returns.

: ; Lox2 1 t A2

Historical Average: 67,1 =:> 10

(uses all available data)
_ 1 xm-1 A2

Simple Moving Average: crt+1 =20 iy
(uses last m single-period sample estimates)

Exponential Moving Average: 67, = (1 — 8)62 + 862 0<p<1
(uses all available data)

Exponential Weighted Moving Average'

O%Jrl - ij 1( )/[z BJ] (uses last-m)
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Simple Regression:
G241 = 1,07 + V1607 1+ Vp 07 pn Ut
Regression can be fit using all data or last m (rolling-windows).
Note: similar but different from auto-regression model of 52

Trade-Offs
@ Use more data to increase precision of estimators
@ Use data closer to time t for estimation of o;.
Evaluate out-of-sample performance
@ Distinguish assets and asset-classes
o Consider different sampling frequencies and different forecast

horizons
@ Apply performance measures (MSE, MAE, MAPE, etc.)
Benchmark Methodology: RiskMetrics
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For {S(t)} the price of a security/portfolio at time t:
dS(t) = uS(t)dt + oS(t)dW(t),
where
@ o is the volatility of the security’s price
@ i is mean return (per unit time).
e dS(t) infinitesimal increment in price

e dW(t)infinitesimal increment of a standard Brownian
Motion/Wiener Process

o Increments [W(t") — W(t)] are Gaussian with mean zero and
variance (t' — t).
e Increments on disjoint time intervals are independent.
For ti < th < t3 < tg,
[W(t:) — W(t1)] and [W(ty) — W(t3)] are independent
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Sample Data from Process:

@ Prices: {S(t),t =to,t1,...,tn}
@ Returns: {R; = log[S(t;)/S(tj-1)],j =1,2,...,n}
indep. r.v.'s: Rj ~ N(uAj, 0%A;), where
A; = (tj — tj_l) and p, = [M — 02/2]
({log[S(t)]} is Brownian Motion with drift 1 and volatility o2.)

Maximum-Likelihood Parameter Estimation
o If Aj =1, then
LY
A~ n
6 = $21(Re—R)
o If A; varies ... Exercise.
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Geometric Brownian Motion

Garman-Klass Estimator:

@ Sample information more than period-close prices, also have
period-high, period-low, and period-open prices.
o Assume =0, A; =1 (e.g., daily) and let f € (0,1) denote
the fraction of the day prior to the market open.
G = log[5(t)]
0 = log[S(tj1+f)]

H; = max  log[S(t)]

ti1+f<t<t

L = in  log[S(t
j LI og[5(t)]
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Garman-Klass Estimator

Using data from the first period:

e &8 = (C; — Go)? : Close-to-Close squared return
E[63] = 02, and var[63] = 2(0?)? = 25*.

ERY

° &% = M : Close-to-Open squared return
E[62] = 02, and var[63] = 2(0?)? = 20*.
R

° &% = % : Open-to-Close squared return

E[63] = 02, and var[53] = 2(0?)? = 20*.
Note: 62 and 43 are independent!
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Parkinson (1976): With f = 0, defines

6% = % and shows eff(62) ~ 5.2.
Garman and Klass (1980) show that for any 0 < f < 1:
0 62=ax62+(1—a)s3
has minimum variance when a = 0.17, independent of f and
Eff(62) ~ 6.2.
@ "Best Analytic Scale-Invariant Estimator”’
62, = 0.511(uy — d1)?—0.019{c1(u1 + di) —2u1d1 } —0.383¢2,
where the normalized high/low/close are:

Uj = HJ—OJ
d = Li-0
g = G-0

and Eff(62,) ~ 7.4
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@ If 0 < f < 1 then the opening price O; may differ from Gy

and the composite estimator is

5%}( — g0 Co) +(1— a)( 5*)

which has minimum varlance when a = 0.12 and
Eff(62,) ~ 8.4.
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Poisson Jump Diffusions

For {S(t)} the stochastic proces for the price of the

security /portfolio at time t,

%(t? = pdt + odW(t) +yo Z(t)dIN(t),

where

e dS(t) = infinitesimal increment in price.
(& = mean return (per unit time)
o = diffusion volatility of the security’s price process
dW/(t)= increment of standard Wiener Process
dlN(t) = increment of a Poisson Process with rate A,
modeling the jump process.
(yo) x Z(t), the magnitude a return jump/shock
Z(t) i.i.d N(0,1) r.v.'s and
~v= scale(o units) of jump magnitudes.
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Poisson Jump Diffusions

Maximum-Likelihood Estimation of the PJD Model

@ Model is a Poisson mixture of Gaussian Distributions.

@ Moment-generating function derived as that of random sum
of independent random variables.

@ Likelihood function product of infinite sums

o EM Algorithm* expressible in closed form

e Jumps treated as latent variables which simplify computations
e Algorithm provides a posteriori estimates of number of jumps
per time period.

* See Pickard, Kempthorne, Zakaria (1987).
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ARCH Models

ARCH models are specified relative to the discrete-time process for
the price of the security/portfolio: {S;,t =1,2,...}

Engle (1982) models the discrete returns of the process
¥t = log(S¢/St-1) as
Yi = pt + €,
where p; is the mean return, conditional on F;_1, the information
available through time (t — 1), and
€r = Zt X 0y,
where Z; i.i.d. with E[Z;] =0, and var[Z;] =1,
a? = Qg + a16%_1 + Oé26%_2 + -+ oz,,e%fp
Parameter Constraints: o; >0,/ =0,1,...,p
02 = var(R; | Ft—1), “Conditional Heteroscedasticity” of returns .

MIT 18.5096 Volatility Modeling



Defining Volatility
Historical Volati easurement and Prediction
- . Geometric Browni otion
Volatility Modeling Poisson Jump Diffusions
ARCH Models
GARCH Models

ARCH Models

The ARCH model:
o? :ao—f—ale% 1 —l—ozgef 2+"'+CYP6%7P
implies an AR model in €2. Add (¢ — 02) = u; to both sides:

e%:a(ﬁ—alef 1+a26t 2—1—---—1—04,,6% p—l—ut

where u; : E[u; | F¢] = 0, and var[u; | Fi] = var(e?) = 207%.
Lagrange Multiplier Test
Ho:o1=a2=-=0a,=0
o Fit linear regression on squared residuals € = y; — [iz.
(i.e., Fit an AR(p) model to [é2], t = 1,2,...,n)
o LM test statistic = nR?, where R? is the R-squared of the

fitted AR(p) model.
Under Hp the r.v. nR? is approx. x? (df = p)
@ Note: the linear regression estimates of parameters are not MLES under Gaussian

Volatlllty Modeling
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Maximum Likelihood Estimation

ARCH Model:
Yo = CcHe€
€t = Zt0t
U? = oo+ ale%_l +- 4+ ozpe%_p
t=0,1,...,T
Likelihood:
Lc,a) = p(y1,---s¥nlcap,a1,...,0p)
= Tlizip(yt | Fioa,c, c})
—1¢
= il men(3 )]
where €; = yy — C and
0? =ap + alef_l + - ape%_p.
Constraints:

e a;>0,i=1,2,...,p
o (q+---+ap) <Ll
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GARCH Models

Bollerslev (1986) extended ARCH models to:
GARCH(p,q) Model

of = a0+ 0 aieg_; + 30, Biop
Constraints: «; > 0,Vi, and 8; > 0,Vj

GARCH(1,1) Model

2 _ 2 2
of = ag +ar€es_; + Pfrog_

@ Parsimonious

o Fits many financial time seriies
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GARCH Models

The GARCH(1,1) model:
02 =ag + alef_l + 5103_1
implies an ARMA model in €2. Eliminate a?, using (ef, — af,) = uy
€ —u = agtoayt 6%_1 + 51(6%_1 — U-1)
6% = ap+ (aq+ ﬁl)ﬁf,l + Uy — Brup—1
where u; : E[u; | F¢] = 0, and var[u; | Ft] = var(e?) = 207%.
= GARCH(1,1) implies an ARMA(1,1) with
ur = (€2 — 02) ~ WN(0,20%)
Stationarity of GARCH model deduced from ARMA model
AlL)e? = B(L)u;
e = [AL]'B(L)u.
Covariance stationary:roots of A(z) outside {|z| < 1},i.e.,
lan + f1| < 1
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Unconditional Volatility / Long-Run Variance
GARCH(1,1): Assuming stationarity, 0 < (a1 + 1) < 1

02 = ag+ (o + B1)o?
2 Qo
= 0 = (I—a1—p1)

GARCH(p,q) implies ARMA( max(p,q), q) model
e Stationary if 0 < (D i +>.785) <1

@ Long-Run Variance:
of = a0+ (Xf e+ 3 B1)od

g
1= 7P (ai45)]
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GARCH Model Estimation

Maximum Likelihood Estimation

GARCH Model:
Yo = c+teér
€t = Z0¢t
o7 = a0+210‘€t 221 Bjos —j
t=0,1,.
Likelihood:
L(Caauﬁ) = p(y17"'7.yT|C7a07a17"‘7ap7617"'75(7)

= H;rlp(yt‘*’rt 1, G, a,,@)
= Ll Aen3 2]

where €; = y; — ¢ and
2 _ P .2 q 2
or =ao+ a6+ Bioy_;-
Constraints: o; > 0,Vi, #; > 0,Vj, and 0 < (P ay + 331 5;) < L.
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@ Maximum-Likelihood Estimates: ¢, &,
= é&and 62 (t=T,T—-1,...)
@ Standardized Residuals
€t/6+: should be uncorrelated
@ Squared Standardized Residuals
(¢:/5+)?: should be uncorrelated

Testing Normality of Residuals
@ Normal QQ Plots
@ Jaque-Bera test
@ Shapiro-Wilk test
@ MLE Percentiles Goodness-of-Fit Test
@ Kolmogorov-Smirnov Goodness-of-Fit Test

Model Selection: Apply model-selection critera

@ Akaike Information Criterion (AIC)
@ Bayes Information Criterion (BIC)
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Volatility Clustering

o Large €2 follow large 6%—1
@ Small e% follow small 6%71

GARCH models can prescribe

o Large o2 follow large 02,
e Small o2 follow small 02 _;

Heavy Tails / Fat Tails

@ Returns distribution has heavier tails (higher Kurtosis) than
Gaussian

e GARCH(p,q) models are stochastic mixture of Gaussian
distributions with higher kurtosis.

Engle, Bollerslev, and Nelson (1994)
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Poisson Jump
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Stylized Features of Returns/Volatility

Volatility Mean Reversion
GARCH(1,1) Model
_ oo

o Long-run average volatility: 02 = -
@ Mean-Reversion to Long-Run Average

¢ = ao+(a1+pr)e y + ur — Prug
Substituting: ag = (1 — a; — f1)0?
(€ —02) = (on+pu)(efy —02) +ue — Prues

0 < (a1 + 1) < 1 = Mean Reversion!

Extended Ornstein-Uhlenbeck(OU) Process for
€2 with MA(1) errors.
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EGARCH Nelson (1992)

TGARCH Glosten, Jagannathan, Runkler (1993)
PGARCH Ding, Engle, Granger
GARCH-In-Mean

Non-Gaussian Distributions

o t—Distributions
o Generalized Error Distributions (GED)
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