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Linear Factor Model

Data:

m assets/instruments/indexes: i = 1, 2, . . . ,m

n time periods: t = 1, 2, . . . , n

m-variate random vector for each time period:
xt = (x1,t , x2,t , . . . , xm,t)

′
E.g., returns on m stocks/futures/currencies;

interest-rate yields on m US Treasury instruments.

Factor Model
xi ,t = αi + β1,i f1,t + β2,i f2,t + · · ·+ βk,i fk,t + εi ,t

= αi + β′i ft + εi ,t where

αi : intercept of asset i

ft = (f1,t , f2,t , . . . , fK ,t)
′: common factor variables at period t (constant over i)

βi = (β1,i , . . . , βK ,i )
′: factor loadings of asset i (constant over t)

εi,t : the specific factor of asset i at period t.
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Linear Factor Model

Linear Factor Model: Cross-Sectional Regressions
xt = α + Bft + εt ,

for each t ∈ {1, 2 . . . ,T}, where
α1

α2

α = . (m 1); B =
.

×


β′ ε , 1 1 t   β2
′




.
αm

 ..


.

β′


m

 =
[[
βi,k


]] ε2,t    (m × K); εt =

 . 1)
..

ε


m,

 (m ×

t

α and B are the same for all t.
{ft} is (K−variate) covariance stationary I (0) with

E [ft ] = µf
Cov [ft ] = E [(ft − µf )(ft − µf )′] = Ωf

{εt} is m-variate white noise with:
E [εt ] = 0m

Cov [εt ] = E [εtε′t ] = Ψ
Cov [εt , εt′ ] = E [εtε′ ] = 0

t′ ∀t 6= t′

Ψ is the (m ×m) diagonal matrix with entries (σ2, σ2, . . . , σ2 ) where1 2 m
σ2 = var(εi i,t), the variance of the ith asset specific factor.
The two processes {ft} and {εt} have null cross-covariances:

E [(ft − µf )(εt′ − 0m)′] =MIT 18.S096 Factor Models 4
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Linear Factor Model

Summary of Parameters
α: (m × 1) intercepts for m assets

B: (m × K) loadings on K common factors for m assets

µf : (K × 1) mean vector of K common factors

Ωf : (K × K) covariance matrix of K common factors

Ψ = diag(σ2, . . . , σ2
m): m asset-specific variances1

Features of Linear Factor Model

The m−variate stochastic process {xt} is a
covariance-stationary multivariate time series with

Conditional moments:
E [xt | ft ] = α + Bft

Cov [xt | ft ] = Ψ
Unconditional moments:

E [xt ] = µx = α + Bµf

Cov [xt ] = Σx = BΩf B
′ + Ψ
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Linear Factor Model

Linear Factor Model: Time Series Regressions
xi = 1Tαi + Fβi + εi ,

for each asseti ∈ {1, 2 .. . ,m},
ε

where
x · · f


x =

 i,1 f′ . ..

  
f f ·

i xi,t i =
.


ε

 i,t  1 1,

..    K ,1

..   1 2,1

. . . .. . . .    .   .   . . . .   εi,t
′

.

 = ft
. ..

T

 F 
.. ..

x1, εi,T


f′

 =
 f1,t f2,t · · · fK ,t       . . . .. . . .. . . .


f1,T f2,T · · · fT K ,T


αi and βi = (β1,i , . . . , βK ,i ) are regression parameters.

εi is the T -vector of regression errors with Cov(εi ) = σ2
i IT

Linear Factor Model: Multivariate Regression
X = [x1| · · · |xm], E = [ε1| · · · |εm], B = [β1| · · · |βm],
X = 1Tα

′ + FB + E
(note that B equals the transpose of cross-sectional B)

MIT 18.S096 Factor Models 6



Factor Models

Linear Factor Model
Macroeconomic Factor Models
Fundamental Factor Models
Statistical Factor Models: Factor Analysis
Principal Components Analysis
Statistical Factor Models: Principal Factor Method

Outline

1 Factor Models
Linear Factor Model
Macroeconomic Factor Models
Fundamental Factor Models
Statistical Factor Models: Factor Analysis
Principal Components Analysis
Statistical Factor Models: Principal Factor Method

MIT 18.S096 Factor Models 7



Factor Models

Linear Factor Model
Macroeconomic Factor Models
Fundamental Factor Models
Statistical Factor Models: Factor Analysis
Principal Components Analysis
Statistical Factor Models: Principal Factor Method

Macroeconomic Factor Models

Single Factor Model of Sharpe (1970)
xi ,t = αi + βiRMt + εi ,t i = 1, . . . ,m t = 1, . . . ,T

where

RMt is the return of the market index in excess of the
risk-free rate; the market risk factor.

xi ,t is the return of asset i in excess of the risk-free rate.

K = 1 and the single factor is f1,t = RMt .

Unconditional cross-sectional covariance matrix of the assets:
Cov(xt) = Σx = σ2

Mββ′ + Ψ where

σ2
M = Var(RMt)

β = (β1, . . . , βm)′

Ψ = diag(σ2
1 , . . . , σ

2
m)
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Estimation of Sharpe’s Single Index Model

Single Index Model satisfies the Generalized Gauss-Markov
assumptions so the least-squares estimates (α̂i , β̂i ) from the
time-series regression for each asset i are best linear unbiased
estimates (BLUE) and the MLEs under Gaussian assumptions.

x ˆ
i = 1T α̂i + RMβi + ε̂i

Unbiased estimators of remaining parameters:

σ̂2
i = (ε̂′i ε̂i )/(T − 2)

σ̂2
M = [

∑T
t=1(RMt − R̄M)2]/(T − 1) with R̄M = (

∑T
t=1 RMt)/T

Ψ̂ = diag(σ̂2
1 , . . . , σ̂

2
m)

Estimator of unconditional covariance matrix:
Cov̂(xt) = Σ̂x = σ̂2 ˆ

Mββ̂
′

+ Ψ̂
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Macroeconomic Multifactor Model
The common factor variables {ft} are realized values of macro
econonomic variables, such as

Market risk
Price indices (CPI, PPI, commodities) / Inflation
Industrial production (GDP)
Money growth
Interest rates
Housing starts
Unemployment
See Chen, Ross, Roll (1986). “Economic Forces and the Stock Market”

Linear Factor Model as Time Series Regressions
xi = 1Tαi + Fβi + εi , where

F = [f1, f2, . . . fT ]′ is the (T × K ) matrix of realized values of
(K > 0) macroeconomic factors.
Unconditional cross-sectional covariance matrix of the assets:

Cov(xt) = BΩf B
′ + Ψ

where B = (β1, . . . ,βm)′ is (m × K )
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Estimation of Multifactor Model

Multifactor model satisfies the Generalized Gauss-Markov
assumptions so the least-squares estimates α̂i and β̂i (K × 1)

from the time-series regression for each asset i are best linear
unbiased estimates (BLUE) and the MLEs under Gaussian
assumptions.

x β̂i = 1T α̂i + F i + ε̂i

Unbiased estimators of remaining parameters:

σ̂2
i = (ε̂′i ε̂i )/[T − (k + 1)]

Ψ̂ = diag(σ̂2
1 , . . . , σ̂

2
m)

Ω̂f = [
∑T

t=1(ft − f̄)(∑ft − f̄)′]/(T − 1)

with f̄ T= ( t=1 ft)/T

Estimator of unconditional covariance matrix:
Cov̂(xt) = Σ̂ 2 ˆ ˆ ˆ ˆ

x = σ̂ BΩf B
′

M + Ψ
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Fundamental Factor Models

The common-factor variables {ft} are determined using
fundamental, asset-specific attributes such as

Sector/industry membership.

Firm size (market capitalization)

Dividend yield

Style (growth/value as measured by price-to-book,
earnings-to-price, ...)

Etc.

BARRA Approach (Barr Rosenberg)

Treat observable asset-specific attributes as
factor betas
Factor realizations {ft} are unobservable, but
are estimated.
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Fama-French Approach (Eugene Fama and Kenneth French)

For every time period t, apply cross-sectional
sorts to define factor realizations

For a given asset attribute, sort the assets at
period t by that attribute and define quintile
portfolios based on splitting the assets into 5
equal-weighted portfolios.
Form the hedge portfolio which is long the top
quintile assets and short the bottom quintile
assets.

Define the common factor realizations for period
t as the period-t returns for the K hedge
portfolios corresponding to the K fundamental
asset attributes.
Estimate the factor loadings on assets using time
series regressions, separately for each asset i .
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Barra Industry Factor Model

Suppose the m assets (i = 1, 2, . . . ,m) separate into K
industry groups (k = 1, . . . ,K )
For each asset i{, define the factor loadings (k = 1, . . .K )

1 if asset i is in industry group k
βi ,k =

0 otherwise
These loadings are time invariant.
For time period t, denote the realization of the K factors as

ft = (f1t , . . . , fKt)
′

These K− vector realizations are unobserved.

The Industry Factor Model is
Xi ,t = βi ,1f1t + · · ·+ βi ,K fKt + εit , ∀i , t

where
var(ε 2

it) = σ ,i ∀i
cov(εit , fkt) = 0, ∀i , k, t
cov(fk′t , fkt) = [Ωf ]k′,k , ∀k ′, k, t
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Barra Industry Factor Model

Estimation of the Factor Realizations
For each time period t consider the cross-sectional regression for
the factor model:

xt = Bft + εt (α = 0 so it does not appear)

with

xt =


x1,t

 
β1
′  ε1,t  x2,t   β′2  [[ ]] ε2,t .  (m × 1); B =  .  = βi,k (m ε 1)

.
× K); t =

.


.


(m

.
×

. .

m

 
.

x ,t β′


m εm,t


where E [εt ] = 0m, E [εtε

′
t ] = Ψ, and Cov(ft) = Ωf


.



Compute f̂t by least-squares regression of xt on B with regression parameter ft .
B is (m × K) matrix of indicator variables (same for all t)

B′B = diag(m1, . . .mK ),

where mk is the count of assets i in industry k, and
∑K

k=1 mk = m.

f̂t = (B′B)−1B′xt (vector of industry averages!)

ε̂t = xt − B f̂t
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Barra Industry Factor Model

Estimation of Factor Covariance Matrix

Ω̂f = 1
T−1

∑T
t=1(f̂t − ¯̂f)(f̂t − ¯̂f)′

¯̂f = 1 fT

∑T ˆ
t=1 t

Estimation of Residual Covariance Matrix Ψ̂

Ψ̂ = diag(σ̂2
1, . . . , σ̂

2
m)

where
σ̂2
i = 1

T−1

∑T
t=1[ε̂i ,t − ¯̂εi ]

2

¯̂εi = 1 T
T

∑
t=1 ε̂i ,t

Estimation of Industry Factor Model Covariance Matrix
Σ̂ = B ′Ω̂f B + Ψ̂

MIT 18.S096 Factor Models 17



Factor Models

Linear Factor Model
Macroeconomic Factor Models
Fundamental Factor Models
Statistical Factor Models: Factor Analysis
Principal Components Analysis
Statistical Factor Models: Principal Factor Method

Barra Industry Factor Model

Further Details

Inefficiency of least squares estimates due to
heteroscedasticity in Ψ.
Resolution: apply Generalized Least Squares (GLS) estimating
Ψ in the cross-sectional regressions.

The factor realizations can be rescaled to represent factor
mimicking portfolios

The Barra Industry Factor Model can be expressed as a
seemingly unrelated regression (SUR) model
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Statistical Factor Models

The common-factor variables {ft} are hidden (latent) and their
structure is deduced from analysis of the observed returns/data
{xt}. The primary methods for extraction of factor structure are:

Factor Analysis

Principal Components Analysis

Both methods model the Σ, the covariance matrix of
{xt , t = 1, . . . ,T} by focusing on the sample covariance matrix Σ̂,
computed as follows:

X = [x1 : · · · xT ] (m × T )

X∗ = X · (IT − 1
T 1T1′T ) (‘de-meaned’ by row)

Σ̂x = 1 XT
∗(X∗)′
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Factor Analysis Model

Linear Factor Model as Cross-Sectional Regression
xt = α + Bft + εt ,

for each t ∈ {1, 2 . . . ,T} ( m equations expressed in vector/matrix form) where
α and B are the same for all t.
{ft} is (K−variate) covariance stationary I (0) with E [ft ] = µf , Cov [ft ] = Ωf

{εt} is m-variate white noise with E [εt ] = 0m and Cov [ε 2
t ] = Ψ = diag(σ )i

Invariance to Linear Tranforms of ft

For any (K × K ) invertible matrix H define
f∗t = Hft and B∗ = BH−1

Then the linear factor model holds replacing ft and B

xt = α + B∗f∗t + εt = α + BH−1Hft + εt
= α + Bft + εt

and replacing µf and Ωf with
Ω∗f = Cov(f∗t ) = Cov(Hft) = HCov(ft)H ′ = HΩfH

′

µ∗f = Hµf
MIT 18.S096 Factor Models 21
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Factor Analysis Model

Standard Formulation of Factor Analysis Model

Orthonormal factors: Ωf = IK
This is achieved by choosing H = ΓΛ−

1
2 , where

Ωf = ΓΛΓ′ is the spectral/eigen decomposition
with orthogonal (K × K ) matrix Γ and diagonal matrix
Λ = diag(λ1, . . . , λK ), where λ1 ≥ λ2 ≥ · · · ≥ λK > 0.

Zero-mean factors: µf = 0K

This is achieved by adjusting α to incorporate the mean
contribution from the factors:

α∗ = α + Bµf

Under these assumptions the unconditional covariance matrix is
Cov(xt) = Σx = BB ′ + Ψ
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Factor Analysis Model

Maximum Likelihood Estimation
For the model

xt = α + Bft + εt
α and B are vector/matrix constants.
All random variables are Normal/Gaussian:

xt i.i.d. Nm(α,Σx)
ft i.i.d. NK (0K IK )
εt i.i.d. Nm(0m,Ψ)

Cov(xt) = Σx = BB′ + Ψ

Model Likelihood
L(α,Σx) = p∏(x1, . . . , xT | α,Σ)

T= ∏t=1[p(xt | α,Σ)]
T 1

= t=1[(2π)−m/2|Σ|− 2 exp
(
−1 (xt α) Σ 1(xt α) ]2

TTm

− ′ −
x −

= (2π)− /2|Σ|−

)
2 exp

[
−1

2

∑T
t=1(xt −α)′Σ−1

x (xt −α)
]
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Factor Analysis Model

Log Likelihood of the Factor Model

l(α,Σx) = log L(α,Σx)

= −TK
2 log(2π)− K

2 log(|Σ|)
−1 T

2

∑
t=1(xt −α)′Σ−1

x (xt −α)

Maximum Likelihood Estimates (MLEs)

The MLEs of α, B, Ψ are the values which
Maximize l(α,Σx)
Subject to: Σx = BB ′ + Ψ

The MLEs are computed numerically applying the
Expectation-Maximization (EM) algorithm*

* Optional Reading: Dempster, Laird, and Rubin (1977), Rubin and Thayer (1983).
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Factor Analysis Model

ML Specification of the Factor Model

Apply EM algorithm to compute α̂ and B̂ and Ψ̂.

Estimate factor realizations {ft}
Apply the cross-sectional regression models for each time
period t:

xt − α̂ = B̂ft + ε̂t
Solving for f̂ as the regression parameter estimates of the
regression of observed xt on the estimated factor loadings
matrix. Taking account of the heteroscedasticity in ε, apply
GLS estimates:

f̂ = [B̂
′ 1
Ψ̂
− ˆ

t B]−1[B̂
′
Ψ̂
−1

(xt − α̂)]

(Optional) Consider coordinate rotations of orthonormal
factors as alternate interpretations of model.
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Factor Analysis Model

Further Details of ML Specification

Estimated factor realizations can be rescaled to represent
factor mimicking portfolios

Likelihood Ratio test can be applied to test for the number of
factors.

Test Statistic: LR(K ) = 2[l(α̃,Σ)˜ − l(α̂, B̂,Ψ)]ˆ

where H0: K factors are sufficient to model Σ and
α̃ and Σ̃ are the MLEs with no factor-model restrictions.
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Principal Components Analysis (PCA)

An m−va riate random variable:

x =
 x1 ...

, with E [x] = α ∈ <m, and Cov [x] = Σ (m × m)

xm
Eigenvalues/eigenvectors of Σ:

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0: m eigenvalues.
γ1,γ2, . . . ,γm: m orthonormal eigenvectors:

Σγ i = λiγ i , i = 1, . . . ,m
γ′iγ i = 1, ∀i
γ′iγ i = 0,′ ∀i 6= i ′

Σ =
∑m

i=1 λiγ iγ
′
i

Principal Component Variables:
pi = γ ′i (x−α), i = 1, . . . ,m
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Principal Components Analysis

Principal Components in Vector/Matrix Form

m−Variate x : E [x] = α, Cov [x] = Σ
Σ = ΓΛΓ′, where

Λ = diag(λ1, λ2, . . . , λm)
Γ = [γ1 : γ2 : · · · : γm]
Γ′Γ = Im

p


p1

=  .. ), m.

 = Γ′(x−α −Variate PC variables
pm

E [p] = E [Γ′(x−α)] = Γ′E [(x− E [x])] = 0m

Cov [p] = Cov [Γ′(x−α)] = Γ′Cov [x]Γ
= Γ′ΣΓ = Γ′(ΓλΓ′)Γ = Λ

p is a vector of zero-mean, uncorrelated random variables that
provides an orthogonal basis for x.
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Principal Components Analysis

m−Variate x in Principal Components Form
x

x =


1 ..


 = α + Γp, where E [p] = 0m, Cov [p] = Λ.

xm

Partition Γ = [Γ1Γ2] where Γ1 corresponds to the K (< m)
largest eigenvalues of Σ.

p
Partition p =

[
1

p2

]
where p1 contains the first K elements.

x = α + Γ1p1 + Γ2p2 = α + Bf + ε
where

B = Γ1 (m × K)

f = p1 (K × 1)

ε = Γ2p2 (m × 1)

Like factor model except Cov [ε] = Γ2Λ2Γ′2, where Λ2 is diagonal matrix of last

(m − K) eigenvalues.
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Empirical Principal Components Analysis

The principal components analysis of
X = [x1 : · · · xT ] (m × T )

consists of the following computational steps:

Component/row means : x̄ = ( 1 )X1T T

‘De-meaned’ matrix: X∗ = X− x̄1′T
Sample covariance matrix: Σ̂x = 1 XT

∗(X∗)′

Eigenvalue/vector decomposition: Σ̂x = Γ̂Λ̂Γ̂
′

yielding estimates of Γ and Λ.

Sample Principal Components:

P = [p1 : · · · : pT ] = Γ̂
′
X∗. (m × T )
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Empirical Principal Components Analysis

PCA Using Singular Value Decomposition
Consider the Singular Value Decomposition (SVD) of the
de-meaned matrix:

X∗ = VDU′

where

V: (m ×m) orthogonal matrix, VV′ = Im.

U: (m × T ) row-orthonormal matrix, UV′ = Im.

D: (m ×m) diagonal matrix, D = diag(d1, . . . , dm)
with d1 ≥ d2 ≥ · · · ≥ 0.

Exercise: Show that

Λ̂ = 1
T D2

Γ̂ = V

P = Γ̂
′
X∗ = DU′
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Alternate Definition of PC Variables

Given the m−variate x : E [x] = α and Cov [x] = Σ

Define the First Principal Component Variable as
p1 = w′x = (w1x1 + w2x2 + · · ·+ wmxm)

where the coefficients w= (w1,w2, . . . ,wm)′ are chosen to
maximize: Var(p1)∑= w′Σxw
subject to: |w|2 m= i=1 w

2
i = 1.

Define the Second Principal Component Variable as
p2 = v′x = (v1x1 + v2x2 + · · ·+ vmxm)

where the coefficients v= (v1, v2, . . . , vm)′ are chosen to
maximize: Var(p2)∑= v′Σxv

msubject to: |v|2 = i=1 v
2
i = 1, and v′w = 0.

Etc., defining up to pm, The coefficient vectors are given by
[w : v : · · · ] = [γ1 : γ2 : · · · ] = Γ

MIT 18.S096 Factor Models 33



Factor Models

Linear Factor Model
Macroeconomic Factor Models
Fundamental Factor Models
Statistical Factor Models: Factor Analysis
Principal Components Analysis
Statistical Factor Models: Principal Factor Method

Principal Components Analysis

Further Details

PCA provides a decomposition of the Total Variance:
Total Variance (x m) =

=

∑
i=1 Var(xi ) = trace(Σx)

trace∑ (ΓΛΓ′) = trace(ΛΓ′Γ) = trace(Λ)
m= k=1 λk
m=

=

∑
k=1 Var(pk)

Total Variance (p)

The transformation from x to p is a change in coordinate
system which shifts the origin to the mean/expectation
E [x] = α and rotates the coordinate axes to align with the
Principal Component Variables. Distance in the space is
preserved (due to orthogonality of the rotation).
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Outline
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Factor Analysis Model

For {xt , t = 1, . . . ,T}, the factor model is:
xt = α + Bft + εt

α and B are vector/matrix constants.

All random variables are Normal/Gaussian:

xt i.i.d. Nm(α,Σx)
ft i.i.d. NK (0K IK )
εt i.i.d. Nm(0m,Ψ)

Cov(xt) = Σx = BB′ + Ψ

Principal Factor Method of Estimation
To fit a K−factor model with fixed K < m, define

X = [x1 : · · · xT ] (m × T )
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Principal Factor Method of Estimation

Step 1: Conduct the computational steps of principal
components analysis:

Component/row means :x̄ = ( 1
T

)X1T

‘De-meaned’ matrix: X∗ = X− x̄1′T
Sample covariance matrix: Σ̂x = 1

T
X∗(X∗)′

Eigenvalue/vector decomposition: Σ̂x = Γ̂Λ̂Γ̂
′

yielding estimates of Γ and Λ.

Step 2: Specify initial estimates (index s = 0)

α̃0 = x̄
B̃0 = Γ̂(K)(Λ̂(K))

1
2 , where

Γ̂(K) is submatrix of Γ̂ (first K columns)
Λ̂(K) is submatrix of Λ̂ (first K columns)

Ψ̃0 = diag(Σ̂x)− diag(B̃ ˜
0B
′
0)

Σ̃0 = B̃ ˜
0B
′
0 + Ψ̃0
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Principal Factor Method of Estimation

Step 3: Adjust the sample covariance matrix to
Σ̂
∗
x = Σ̂x − Ψ̃0

Compute the eigenvalue/vector decomposition:

Σ̂
∗
x = Γ̃Λ̃Γ̃

′

yielding updated estimates of Γ and Λ
Repeat Step 2 with these new estimates
obtaining B̃1, Ψ̃1, Σ̃1 = B̃ ˜

1B
′
1 + Ψ̃1

Step 4: Repeat Step 3 generating a sequence of estimates
(B̃s , Ψ̃s , Σ̃s) s = 1, 2, . . ., until successive changes in
Ψ̃s are sufficiently negligible.

Step 5: Use the estimates from the last iteration in Step 4.
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