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Markowitz Mean-Variance Analysis (MVA)

Single-Period Analyisis

m risky assets: i = 1, 2, . . . ,m
Single-Period Returns: m−variate random vector

R = [R1,R2, . . . ,Rm]′

Mean and Variance/Covariance of Returns:
α1

 
Σ1,1 · · · Σ1,m

.
E [R] = α =

 . . ..
 ,Cov [R] = Σ =

m

 . . .. . . .


α Σm,1 · · · Σm,m


Portfolio: m−vector of weights indicating the fraction of
portfolio wealth held in each∑asset

w m= (w1, . . . ,wm) : i=1 wi = 1.
= w mPortfolio Return: Rw

′R = i=1 wiRi a r.v. with
αw = E [Rw] =

∑
w′α

σ2
w = var [Rw] = w′Σw
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Markowitz Mean Variance Analysis

Evaluate different portfolios w using the mean-variance pair of the
portfolio: (αw, σ

2
w) with preferences for

Higher expected returns αw

Lower variance varw

Problem I: Risk Minimization: For a given choice of target mean
return α0, choose the portfolio w to

Minimize: 1w2
′Σw

Subject to: w′α = α0

w′1m = 1
Solution: Apply the method of Lagrange multipliers to the convex
optimization (minimization) problem subject to linear constraints:
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Risk Minimization Problem

Define the Lagrangian
L(w, λ1, λ2) = 1w2

′Σw+λ1(α0−w′α)+λ2(1−w′1m)
Derive the first-order conditions

∂L = 0∂w m = Σw − λ1α− λ21m
∂L
∂λ1

= 0 = α0 −w′α
∂L = 0 = 1∂λ2

−w′1m

Solve for w in terms of λ1, λ2:
w0 = λ1Σ−1α + λ2Σ−11m

Solve for λ1, λ2 by substituting for w:
α = w′α = λ (α′Σ−1α) + λ (α′Σ−1

0 0 1 2 1m)
1 = w′ 1 = λ (α′Σ−1 1

0 m 1 1m) + λ2(1′mΣ− 1m)

α a b λ
=⇒ 0 1= with

1 b c λ2

a = (α′Σ−1 1α

[
), b =

]
(α

[ ] [ ]
1

λ a b

′Σ− 1m), and c = (1′mΣ− 1m)
−1

α aα b
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Risk Minimization Problem

Variance of Optimal Portfolio with Return α0

With the given values of λ1 and λ2, the solution portfolio
w0 = λ1Σ−1α + λ2Σ−11m

has minimum variance equal to
σ2

0 = w′0Σw0

= λ2[1(α′Σ]−1α) + 2λ1λ2(α′Σ−1[ ] [ ] 1m) + λ2(1′mΣ−1
2 1m)

λ1
′

a b λ1=
λ2

Substituting =

α

[
λ1

λ2
′

]
a

[ b ] c [ λ2
1

a b
−

α0

]
gives

σ2
0 =

[
0

1

] [ b c 1

b
b c

]−1 [
α0

1

]
= 1

ac−b2

(
cα2

0 − 2bα0 + a
)

Optimal portfolio has variance σ2
0: parabolic in the mean

return α0. MIT 18.S096 Portfolio Theory 6
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Equivalent Optimization Problems

Problem II: Expected Return Maximization: For a given choice
of target return variance σ2

0, choose the portfolio w to

Maximize: E (Rw) = w′α
Subject to: w′Σw = σ2

0

w′1m = 1
Problem III: Risk Aversion Optimization: Let λ ≥ 0 denote the
Arrow -Pratt risk aversion index gauging the trade-ff between risk
and return. Choose the portfolio w to

Maximize:
[
E (Rw)− 1

2λvar(Rw)
]

= w′α− 1
2λw′Σw

Subject to: w′1m = 1
N.B

Problems I,II, and III solved by equivalent Lagrangians
Efficient Frontier:{(α0, σ

2) = (E(Rw0 0 ), var(Rw0 ))|w0 optimal}
Efficient Frontier: traces of α0 (I), σ2 (II), or λ (III)0
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Mean-Variance Optimization with Risk-Free Asset

Risk-Free Asset: In addition to the risky assets (i = 1, . . . ,m)
assume there is a risk-free asset (i = 0) for which

R0 ≡ r0, i.e., E (R0) = r0, and var(R0) = 0.

Portfolio With Investment in Risk-Free Asset

Suppose the investor can invest in the m risky investment as
well as in the risk-free asset.

w′1 m
m =

∑
i=1 wi is invested in risky assets and

1−w1m is invested in the risk-free asset.
If borrowing allowed, (1−w1m) can be negative.
Portfolio: Rw = w′R + (1−w′1m)R0, where
R = (R1, . . . ,Rm), has expected return and variance:

αw = w′α + (1−w′1m)r0
σ2

w = w′Σw
Note: R0 has zero variance and is uncorrelated with R
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Mean-Variance Optimization with Risk-Free Asset

Problem I’: Risk Minimization with Risk-Free Asset
For a given choice of target mean return α0, choose the portfolio
w to

Minimize: 1w2
′Σw

Subject to: w′α + (1−w′1m)r0 = α0

Solution: Apply the method of Lagrange multipliers to the convex
optimization (minimization):

Define the Lagrangian
L(w, λ1) = 1

2w′Σw + λ1[(α0 − r0)−w′(α− 1mr0)]
Derive the first-order conditions

∂L
∂w = 0m = Σw − λ1[α− 1mr0]
∂L = 0 = (α0∂λ1

− r0)−w′(α− 1mr0)

Solve for w in terms of λ1: w0 = λ1Σ−1[α− 1mr0]
and λ1 = (α0 − r0)/[(α− 1mr0)′Σ−1(α− 1mr0)]
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Mean-Variance Optimization with Risk-Free Asset

Available Assets for Investment:

Risky Assets (i = 1, . . . ,m) with returns: R = (R1, . . . ,Rm)
with

E [R] = α and Cov [R] = Σ

Risk-Free Asset with return R0 : R0 ≡ r0, a constant.

Optimal Portfolio P: Target Return = α0

Invests in risky assets according to fractional weights vector:
w0 = λ1Σ−1[α− 1mr0], where

(α )
λ1 = λ1 P) = 0−r( 0

(α−1mr0)′Σ−1(α−1mr0)

Invests in the risk-free asset with weight (1−w′01m)

Portfolio return: RP = w′0R + (1−w′01m)r0

MIT 18.S096 Portfolio Theory 11



Portfolio Theory

Markowitz Mean-Variance Optimization
Mean-Variance Optimization with Risk-Free Asset
Von Neumann-Morgenstern Utility Theory
Portfolio Optimization Constraints
Estimating Return Expectations and Covariance
Alternative Risk Measures

Mean-Variance Optimization with Risk-Free Asset

Portfolio return: RP = w′0R + (1−w′01m)r0

Portfolio variance:
Var(RP) = Var(w′0R + (1−w′01m)r0) = Var(w′0R)

= w′0Σw0 = (α0 − r0)2/[(α− 1mr0)′Σ−1(α− 1mr0)]
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Market Portfolio M

The fully-invested optimal portfolio with
wM : w′M1m = 1.

I.e.
wM = λ1Σ−1[α(− 1mr0], where

λ1 = λ1(M) = 1′
1

Σ−1
m [α− 1mr0]

)−
Market Portfolio Return: RM = w′MR + 0 · R0

(α′Σ−1[= α 1
E (RM) = E (w′MR) = w′Mα

− mr0])

(1′mΣ−1[α−1mr0])

= r0+
[α−1mr0]′Σ−1[α−1mr0])

(1′mΣ−1[α−1mr0])

Var(RM) = w′MΣwM

(E (R
= M)−r0)2

[α 1 r ]′Σ−1[α 1 r ])
1 = − m 0 − m 0

[(α−1mr0)′Σ− (α−1mr0)] (1′mΣ−1[α−1mr0])2
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Tobin’s Separation Theorem: Every optimal portfolio invests in
a combination of the risk-free asset and the Market Portfolio.

Let P be the optimal portfolio for target expected return α0 with
risky-investment weights wP , as specified above.

P invests in the same risky assets as the Market Portfolio and
in the same proportions! The only difference is the total
weight, wM = w′P1m:

λ )
w = 1(P
M λ1(M) = (α0−r0)/[(α−1mr0)Σ−1(α−1mr0)]

(1′mΣ−1[α−1mr0])
−1

= (α0 − r0)
(1′mΣ−1[α−1mr0])

[(α−1mr0)Σ−1(α−1mr0)]

= (α0 − r0)/(E (RM)− r0)
RP = (1− wM)r0 + wMRM

σ2
P = var(RP) = var(wMRM) = w2

MVar(RM) = w2
Mσ

2
M .

E (RP) = r0 + wM(E (RM)− r0)
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Mean Variance Optimization with Risk-Free Asset

Capital Market Line (CML): The efficient frontier of optimal
portfolios as represented on the (σP , µP)-plane of return
expectation (µP) vs standard-deviation (σP) for all portfolios.

CML = {(σP ,E (RP)) : P optimal with wM = w′P1m > 0}
= {(σP , µP) = (σP , r0 + wM(µM − r0)),wM ≥ 0}

Risk Premium/Market Price of Risk
E(RP) = r0 +(wM [E(RM)− r0]

σP
= r0+ [ [σM

)
E (RM)− r0]

E (RM)
= r0 + σP

−r0
σM

]
[
E(RM)−r0

σM

]
is the ‘Market Price of Risk’

Portfolio P’s expected return increases linearly with risk (σP).
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Mean Variance Optimization

Key Papers

Markowitz, H. (1952), “Portfolio Selection”, Journal of
Finance, 7 (1): 77-91.
Tobin, J. (1958) “ Liquidity Preference as a Behavior Towards
Risk,”, Review of Economic Studies, 67: 65-86.
Sharpe, W.F. (1964), “Capital Asset Prices: A Theory of
Market Equilibrium Under Conditions of Risk,” Journal of
Finance, 19: 425-442.
Lintner, J. (1965), “The Valuation of Risk Assets and the
Selection of Risky Investments in Stock Portfolios and Capital
Budgets,” Review of Economics and Statistics, 47: 13-37.
Fama, E.F. (1970), “Efficient Capital Markets: A Review of
Theory and Empirical Work,” Journal of Finance,” 25:
383-417.
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Von Neumann-Morgenstern Utility Theory

Rational portfolio choice must apply preferences based on
Expected Utility

The optimal portfolio solves the
Expected Utility Maximization Problem

Investor: Initial wealth W0

Action: Portfolio choice P (investment weights-vector wP)

Outcome: Wealth after one period W = W0[1 + RP ].

Utility Function: u(W ) : [0,∞) −→ <
Quantitative measure of outcome value to investor.

Expected Utility: E [u(W )] = E [u(W0[1 + Rp])]

MIT 18.S096 Portfolio Theory 18
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Utility Theory

Utility Functions

Basic properties:

u′(W ) > 0: increasing (always)
u′′(W ) < 0: decreasing marginal utility (typically)

Defnitions of risk aversion:

Absolute Risk Aversion: λA(W ) = − u′′(W )
u′(W )

′′
Relative Risk Aversion: λR(W ) = −Wu (W )

u′(W )

If u(W ) is smooth (bounded derivatives of sufficient order),
u(W ) ≈ u(w∗) + u′(w∗)(W − w∗) + 1u2

′′(w )(W∗ − w )2 +∗ · · ·
= (constants) + u′(w )[W∗ − 1λ2 A(w )(W∗ − w )2] +∗ · · ·

Taking expectations
E [u(W )] ∝ E [W − 1

2λ(W − w∗)
2] ≈ E [W ]− 1λVar [W ]2

(setting w = E [W ])∗
MIT 18.S096 Portfolio Theory 19
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Utility Functions

Linear Utility: u(W ) = a + bW , b > 0

Quadratic Utility: u(W ) = W − 1λW 2, λ > 0,2
( and W < λ−1)

Exponential Utility: u(W ) = 1− e−λW , λ > 0

Constant Absolute Risk Aversion (CARA)

Power Utility: u(W ) = W (1−λ), 0 < λ < 1

Constant Relative Risk Aversion (CRRA)

Logarithmic Utility: u(W ) = ln(W )
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Portfolio Optimization Constraints

Long Only:
w : wj ≥ 0,∀j

Holding Constraints:
Li ≤ wi ≤ Ui

where U = (U1, . . . ,Um) and L = (L1, . . . , Lm) are upper and
lower bounds for the m holdings.

Turnover Constraints:
∆w = (∆w1, . . . ,∆wm)

The change vector of portfolio holdings satisfies
|∑∆wj

m
| ≤ Ui , for individual asset limits U

i=1 |∆wj | ≤ U , for portfolio limit U∗ ∗
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Portfolio Optimization Constraints

Benchmark Exposure Constraints:
wB the fractional weights of a Benchmark portfolio
RB = wBR, return of Benchmark portfolio

(e.g., S&P 500 Index,∑NASDAQ 100, Russell 1000/2000)
|w −wB | m= i=1 |[w −wB ]i | < UB

Tracking Error Constraints:
For a given Benchmark portfolio B with fractional weights wB ,
compute the variance of the Tracking Error

TEP = (RP − RB) = [w −wB ]R
var(TEP) = var([w −wB ]R)

= [w −wB ]′Cov(R)[w −wB ]
= [w −wB ]′Σ[w −wB ]

Apply the constraint:
var(TEP) = [w −wB ]′Σ[w −wB ] ≤ σ̄2

TE .
MIT 18.S096 Portfolio Theory 23
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Portfolio Optimization Constraints

Risk Factor Constraints:

For Factor Model
KRi ,t = αi +

∑
k=1 βi ,k fj ,t + εi ,t

Constrain Exposure to Factor k
|
∑m

i=1 βi ,kwi | < Uk ,
Neutralize exposure to all risk factors:

|
∑m

i=1 βi ,kwi | = 0, k = 1, . . . ,K

Other constraints:

Minimum Transaction Size
Minimum Holding Size
Integer Constraints
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General Linear and Quadratic Constraints

For

w : target portfolio
x = w −w0 : transactions given current portfolio w0

wB : benchmark portfolio

Linear Constraints: Specify m-column matrices Aw ,Ax ,AB

and m-vectors uw , ux , uB and constrain
Aww ≤ uw
Axx ≤ ux
AB(w −wB) ≤ uB

Quadratic Constraints: Specify m ×m-matrices Qw ,Qx ,QB

and m-vectors qw , qx , qB and constrain
w′Qww ≤ qw
x′Qxx ≤ qx
(w −wB)′QB(w −wB) ≤ qB
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Estimating Return Expectations and Covariance

Sample Means and Covariance

Motivation
Least squares estimates
Unbiased estimates
Maximum likelihood estimates under certain Gaussian
assumptions

Issues:
Choice of estimation period
Impact of estimation error (!!)

Alternatives

Apply exponential moving averages
Apply dynamic factor models
Conduct optimization with alternative simple models

Single-Index Factor Model (Sharpe)
Constant correlation model
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Alternative Risk Measures

When specifying a portfolio P by wP , such that
RP = w′PR, with asset returns R ∼ (α,Σ).

consider optimization problems replacing the portfolio variance
with alternatives

Mean Absolute Deviation:
MAD(RP) = E (|w∑′(Rp −α)|)

= E (| m
i=1 wi (Ri − αi )|)

Linear programming with linear/quadratic constraints

Semi-Variance:
SemiVar(Rp) = E

[
min(Rp − E [Rp], 0)2

Down-side variance (probability-weighted)

]
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Alternative Risk Measures

Value-at-Risk(VAR): RiskMetrics methodology developed by JP
Morgan. VaR is the magnitude of the percentile loss which
occurs rarely, i.e., with probability ε (= 0.05, 0.01, or 0.001)

VaR1 ε(R )− p = min{r : Pr(Rp ≤ −r) ≤ ε}
Tracking and reporting of risk exposures in trading portfolios
VaR is not convex, or sub-additive, i.e,

VaR(RP1 + RP2) ≤ VaR(RP1) + VaR(RP2)
may not hold (VaR does not improve with diversification).

Conditional Value-at-Risk (CVar): Expected shortfall, expected tail
loss, tail VaR given by

CVaR1−ε(Rp) = E [−RP | −RP ≥ VaR1−ε(Rp)]
See Rockafellar and Uryasev (2000) for optimization of CVaR
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Alternative Risk Measures

Coherent Risk Measures A risk measure s(·) for portfolio return
distributions is coherent if it has the following properties:

Monotonicity: If RP ≤ RP′ , w .p.1, then s(RP) ≥ s(RP′)

Subadditivity: s(RP + RP′) ≤ s(RP) + s(RP′)

Positive homogeneity: s(cRP) = cs(RP) for any real c > 0

Translational invariance: s(RP + a) ≤ s(RP)− a, for any real a.

N.B.

Var(Rp) is not coherent ( not monotonic)

VAR is not coherent (not subadditive)

CVaR is coherent.
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Risk Measures with Skewness/Kurtosis

Consider the Taylor Series expansion of the u(W ) about
w = E (W ), where W = W0(1 + RP) is the wealth after one∗
period when initial wealth W0 is invested in portfolio P.

u(W ) = u(w ) + u′(w )(W∗ ∗ − w ) + 1
∗ 2u

′′(w∗)(W − w∗)
2

+ 1
3!u

(3)(w∗)(W − w∗)
3 + 1 u(4)(w )(W w )4

4!
5

∗ − ∗
+O[(W − w ) ]∗

Taking expectations
E [u(W )] = u(w ) + 0 + 1

∗ 2u
′′(w∗)var(W )

+ 1
3!u

(3)(w∗)Skew(W ) + 1 u(4)(w )Kurtosis(W )4! ∗
+O[(W − w )5]∗

Portfolio Optimization with Higher Moments
Max: E (RP)− λ1Var(RP) + λ2Skew(RP)− λ3Kurtosis(RP)
Subject to: w′1m = 1, where RP = w′RP
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Portfolio Optimization Constraints
Estimating Return Expectations and Covariance
Alternative Risk Measures

Portfolio Optimization with Higher Moments

Notes:

Higher positive Skew is preferred.

Lower even moments may be preferred (less dispersion)

Estimation of Skew and Kurtosis complex: outlier sensitivity;
requires large sample sizes.

Optimization approaches

Multi-objective optimization methods.
Polynomial Goal Programming (PGP).
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