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Cointegration

An m—dimensional stochastic process {X:} = {..., X¢_1,X¢,...}
is /(d), Integrated of order d if the d-differenced process
AX; = (1 - L)X, s stationary.
If {X:} has a VAR(p) representation, i.e.,
O(L) Xt = €, where ®(L) =1 — AL — Ay —--- — ApLP.
then (L) = (1— L)4o*(L)
where ®*(L) = (1 — AL — A3L%2 — ... A% L™) specifies the
stationary VAR(m) process {A9X;} with m = p —d.
Issue:
@ Every component series of {X;} may be /(1), but the process
may not be jointly integrated.
@ Linear combinations of the component series (without any
differencing) may be stationary!
If so, the multivariate time series {X;} is “Cointegrated”
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Consider {X;} where X; = (x1,t,X2.¢, - - -, Xm,¢)’ an m-vector of
component time series, and each is /(1), integrated of order 1.
If {X:} is cointegrated, then there exists an m-vector
B = (B1,52,---,5Bm) such that
B'Xe = Bixie + Boxoe + -+ + BmXm,e ~ 1(0),
a stationary process.
@ The cointegration vector 3 can be scaled arbitrarily, so
assume a normalization:
B = (17ﬁ27' . 'aﬂm)/
@ The expression: 3'X; = u;, where {u;} ~ 1(0) is equivalent
to:
x1,t = (Boxo,t + -+ BmXm,t) + Ut,
where
o B'X, is the long-run equilibrium relationship
e, x1,e = (Boxo,e + -+ BmXm,e)
o u; is the disequilibrium error / cointegration residual.
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Examples of Cointegration

@ Term structure of interest rates: expectations hypothesis.

@ Purchase power parity in foreign exchange: cointegration
among exchange rate, foreign and domestic prices.

@ Money demand: cointegration among money, income, prices
and interest rates.

@ Covered interest rate parity: cointegration among forward and
spot exchange rates.

@ Law of one price: cointegration among identical/equivalent
assets that must be valued identically to limit arbitrage.

e Spot and futures prices.
e Prices of same asset on different trading venues
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Cointegrated VAR Models: VECM Models

The m-dimensional multivariate time series {X;} follows the
VAR(p) model with auto-regressive order p if
Xe=CH+ O X1 +PoXp o+ -+ O X+ 1,
where
C=(c,c,...,cm) is an m-vector of constants.
&, ;... D, are (m x m) matrices of coefficients
{n.} is multivariate white noise MWN(0,, X)

The VAR(p) model is covariance stationary if
det [Im — (@12 4+ @222 + - + ®,zP)] =0
has roots outside |z| < 1 for complex z.

Suppose {X;} is /(1) of order 1. We develop a Vector Error
Correction Model representation of this model by successive
modifications of the model equation:
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VAR(p) Model Equation
Xe=CH+® X 14+ DX o+ +®,X; p,+7,
@ Subtract X;_1 from both sides:
AXe =Xt = X1 = CH+(P1 — Im)Xe1 + PoXp 2+ -+ OpXep + 7,
@ Subtract and add (®; — /,)X;_2) from right-hand side:
AXi = CH (P71 — Im)AXi—1 + (P2 + @1 — I;m)Xeo + - + PpXep + 1,

@ Subtract and add (®3 + @1 — /,)X;_3) from right-hand side:
AXi = CH(P1—Im) AXi_1+H(P2+P1— ) AX; 2+ (P3+ P+ 1 — /) X3+ - -

= AX; = CH+ (P —In)AXi 1
+(®y + &1 — 1) AX; >
+H(®3 + Py + Dy — ) AKX 3+
H(Pp1 4+ D3+ Do+ By — [)) AX; (1)
+(Pp+ - F P33+ Py + Dy — )X+t
Reversing the order of incorporating A-terms we can derive
AX; =C+NXi g+ MAX 1+ + rp—lAth(pfl) + e
where: M= (®1+ @2+ &, — /) and [ = (=37, ., &)
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Vector Error Correction Model (VECM)

The VAR(p) model for {X;} is a VECM model for {AX;}.

AX; = C+NXe +MAX 1+ + rpflAXt—(p—l) + Nt
By assumption, the VAR(p) model for {X;} is /(1), so the VECM
model for {AX;} is 1(0).

@ The left-hand-side AX; is stationary / /(0).

@ The terms on the right-hand-side AX;_;, j =1,2,...,p—1
are stationary / /(0).

@ The term MX; must be stationary //(0).
@ This term MX; contains any cointegrating terms of {X;}.

e Given that the VAR(p) process had unit roots, it must be that
M is singular, i.e., the linear transformation eliminates the unit
roots.
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@ The matrix I is of reduced rank r < m and either

o rank(M) =0 and M = 0 and there are no cointegrating
relationships.
o rank(IM) > 0 and M defines the cointegrating relationships.

If cointegrating relationships exist, then rank(M) = r with
0 < r < m, and we can write

n=ag,
where a and 3 are each (m x r) matrices of full rank r.

@ The columns of 3 define linearly independent vectors which
cointegrate X;.

@ The decomposition of I is not unique. For any invertible
(r x r) matrix G,
where o, = aG and B, = G713
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Estimation of Cointegrated VAR Models

Unrestricted Least Squares Estimation

e Sims, Stock, and Watson (1990), and Park and Phillips
(1989) prove that in estimation for cointegrated VAR(p)
models, the least-squares estimator of the original model
yields parameter estimates which are:

o Consistent.
e Have asymptotic distributions identical to those of
maximum-likelihood estimators.
o Constraints on parameters due to cointegration (i.e., the
reduced rank of M) hold asymptotically.
Maximum Likelihood Estimation*

@ Banerjee and Hendry (1992): apply method of concentrated

likelihood to solve for maximum likelihood estiamtes.

* Advanced topic for optional reading/study
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Estimation of Cointegrated VAR Models

Maximum Likelihood Estimation (continued)

@ Johansen (1991) develops a reduced -rank regression
methodology for the maximum likelihood estimation for
VECM models.

@ This methodology provides likelihood ratio tests for the
number of cointegrating vectors:

o Johansen's Trace Statistic (sum of eigenvalues of M)
o Johansen's Maximum-Eigenvalue Statistic
(max eigenvalue of ).
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Linear State-Space Model

General State-Space Formulation
ye: (k x 1) observation vector at time t
s¢: (m x 1) state-vector at time t
€r: (k x 1) observation-error vector at time t
ne: (n x 1) state transition innovation/error vector
State Equation / Transition Equation
Sty1 = Tise + Reme
where
T:: (m x m) transition coefficients matrix
Re: (m x n) fixed matrix; often column(s) of /,
ne: i.i.d. N(0p, Q:), where Q; (nx ) is positive definite.
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Linear State-Space Model Formulation

Observation Equation / Measurement Equation

Ve = ZtSt + €t
where

Z; : (k x m) observation coefficients matrix

€r: i.i.d. N(Ok, Ht), where Hy (k< « is positive definite.
Joint Equation

|:5t+1:|:|:Tt:|st+|:Rt77t:|

Yt Z €t
= ®¢5¢ + u,

where

Uy = [ Ré?f ] ~ N(0,9Q), with Q= | | H

Note: Often model is time invariant (T, Ry, Z:, Q¢, H: constants)

R:Q:R 0 }
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CAPM Model with Time-Varying Betas

Consider the CAPM Model with time-varying parameters:
re = ar+ Birme + €, €~ N(0,0?)
i1 = ap+ vy, ve ~ N(0,02)
Bey1 = Br+ &, §e ~ N(070§)
where
ry is the excess return of a given asset
I'm,t is the excess return of the market portfolio
{et},{ve}, {&:} are mutually independent processes
Note:
{a;} is a Random Walk with i.i.d. steps N(0,02)
{8} is a Random Walk with i.i.d. steps N(0, o)
(Mutually independent processes)
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Time-Varying CAPM Model: Linear State-Space Model

State Equation
o)=L+ e ]
Bt+1 Bt &t
|10 Qg 10 Ut
-l 215 <o 2] E ]
Equivalently:

Sty1 = TS + Reme

=[] mene[d 2]

2
Nt = [ Z } ~ No(02, Q¢), with Q¢ = [ o 02 ]

where:

Terms: _
state vector s;, transition coefficients T;
transition white noise 7;
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Time-Varying CAPM Model: Linear State-Space Model

Observation Equation / Measurement Equation

rt:[]- rm,t][g:}_'_ft

Equivalently
ry = Ztst + €t
where
Zy = [ 1 rmt ] is the observation coefficients matrix
e: ~ N(0, H;), is the observation white noise
with Hy = o2.
Joint System of Equations

{&4—1]2[7}}&_{_{&%]
Yt Z: €t

= &5t + up with Cov(uy) = [ 0 y
t
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Linear Regression Model with Time-Varying

Consider a normal linear regression model with time-varying
regression coefficients:

vt = x/ B; + €r, where ¢; are i.i.d. N(0,02).
where

Xt = (X1,6,X2,t, - - -, Xp,t )", p-vector of explanatory variables

Be = (B1,t:B2,t5- -, Bp,t)", regression parameter vector
and for each parameter component j, j =1,...,p,

Bjes1 = Bje + 1y, with {nj ¢, t =1,2,...} i.id. N(0,07).

i.e., a Random Walk with iid steps N(O,O'j2).

Joint State-Space Equations

| .
[ St+1 ] = [ pT ] St + [ e } with state vector s; = 3,
Yt Xt €t

. T: Rtnt
| 2] ]
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(Time-Varying) Linear Regression as a State-Space Model

where
nt ~ N(0, @), with Q; = diag(a3,...,02)

P
et ~ N(0, H), with H; = o2.
Special Case: ajz = 0: Normal Linear Regression Model

@ Successive estimation of state-space model parameters with
t=p+1,p+2,..., yields recursive updating algorithm for
linear time-series regression model.
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Autoregressive Model AR(p)

Consider the AR(p) model
d(L)yr = e

P(L)=1-3F ¢;/  and {e} iid. N(0,0?).

where

o)
Yt+1 = Zjl-)zl ¢j}’t+1—j + €141
Define state vector:
St = ()/n)/tfla .- ’}/tfp+1)T

Then
Yt+1 $1 2 o Pp—1 Pp
Ve 1 0 - 0 0 it . 6*51
-
Sei1 = Yi—1 _|0 1 0 0 : * .
. : : . . . '7 B O
Yie(p—2) o o0 ... 1 0 Yt—(p—1)
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State-Space Model for AR(p)

State Equation
St+1 = Ttse + Rene,

where ~ _ -
$1 P2 o Ppo1 Dp 1
1 0 --- 0 0 0
Tt = 0 1 - 0 0 9 Rt = 0 '
o o ... 1 0 0
and ) ) -

{ne = €ry1} i.i.d.N(0, 02).
Observation Equation /Measurement Equation
yr = [1 o0 -- O]St
= Z:s; (no measurement error)
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Moving Average Model MA(q)

Consider the MA(q) model

ye = 0(L)e:
where

O(L)=1+>7,6;L) and {e}iid. N(0,02).
so

Y41 = €r41 + quzl Oicer1—j

Define state vector:
_ T
St = (et—lv €t—2, ... 75t—q)

Then
. 00 --- 00
o X 10 .- 0 0 Ef—; 50’
t— —

S _ o1 0 0 | .
€t—(a-1) 00 .. 1 0]Lca 0
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State-Space Model for MA(q)

State Equation
St+1 = Ttse + Rene,

where ~ _ -
0 0 00 1
1 0 - 00 0

T,=10 1" 00| R=]|0],
00 --- 10 0

and ) ) -

{ne = €t} i.i.d.N(0, 02).
Observation Equation / Measurement Equation
ye = [601 6 - 041 b |stte
= Zisit+ e
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Auto-Regressive-Moving-Average Model ARMA(p, q)

Consider the ARMA(p, g) model
¢(L)yr = O(L)er
where
(L) =1-3F 1 ¢;/  and {e:} iid. N(0,02).
O(L) =1+>7,6;L) and {e} iid. N(0,0?).
so
Yeur =271 Gjyerij + €er1 + 307 Ojery
Set m = max(p,q+ 1) and define

{1, dm}: o(L) =1 = 7, ¢yl
{91,...,9m} : Q(L) =1 Zj:l GJ,LJ

9j=0if p<j<m
;=0ifg<;j<m
So: {y:} ~ ARMA(m, m—1)
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State Space Model for ARMA(p,q)

Harvey (1993) State-Space Specification
Define state vector:

st = (S1,e, 92,8, -5 smjt)T, where m = max(p, g + 1).
recursively:

si.t = ¥+ : Use this definition and the main model equation to
define s, ; and 7;:

Yerr = 2P bjyeri—j +eerr + 3L Oerta
Sier1 = Q151+ 1S+
where
S0t = DimpGiYer1-it ij:]l Oj€tt1—j
Nt = €4l
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o Use 51t =y, 52t , and 1y = €¢41: to define s3;

Rt+1 = z,_g ¢:}/t+2—1 + ZJ 1 9 j€t42—j
$oye + 1+ [ $ivesasj + S5 Ojeeraj] + (O1€c41)
= ¢osie+1-[s3¢]+ Roine

where
S3c = D3 iVero—j+ ij:El Oj€rsoj
Ro1 = 61
Uis = €t+1
o Use 51+ =y, 53+, and 1y = €¢41: to define s4+
S3e+1 = D3 GiYers—j+ ijz_zl Oj€tts—j
= Gaye+ 1 [C s diversj+ 205 Ojeers ]+ (Beri1)
= ¢3s1e+ 1 [sa¢] + Rt
where
Sar = D QiVers—j+ ) i3 Y0ierraj
Rs1 = 0>
t = €411
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e Continuing until
-1
Smt = Ditm BiYer(m-1)—j T 2 em1 Oj€trm—1-
= Omyt—1+ Om—1€¢

which gives

Smit+1 = Omyt + 9m—16t+1 = ¢m51,t + Rm,lnt
where Ry 1 = 0m_1 and 1y = €441
o All the equations can be written together:

stt1 = Tse+ Rne
Vi = Zs; (no measurement error term)
where ~ _ ~ _
o1 10 --- 0 1
10y 01 0 01
T=1": Son . L R= : and
Odm-1 0 0O 1 Om—o
L ¢m o0 -- ] L 0m—1 ]
e iid. N(0,02),and Z=[1 0 --- 0] (1xm)

MIT 18.5096 Time Series Analysis Il



Cointegration: Definitions

Cointegrated VAR Models: VECM Models
Time Series Analysis Il Estimation of Cointegrated VAR Models

Linear State-Space Models

Kalman Filter

Outline

@ Time Series Analysis IlI

o Kalman Filter

Time Series Analysis Il



Time Series Analysis Il Estims of Coi ted VAR Models
Linear State-Spac: dels
Kalman Filter

Kalman Filter

Linear State-Space Model: Joint Equation
T, R
|:5t+1:|:|: t}st_’_{ tﬁt]
Yt Z €t
= ®¢5¢ + uy,
where {n;} i.i.d.Np(0, Qt), {e+} i.i.d.-Ni(0, Hy), so
R : R:Q:R] 0
= | R } o N O Q). with Q; = [ FQRe O }
For 7t = {y1,y2,...,yt}, the observations up to time t, the

Kalman Filter is the recursive computation of the probability
density functions:

Ut

p(5t+1’Ft), t:1727“'
p(st+1, Yer1 | Fe)s t=1,2,...
p(ye+1 | Ft), t=1,2,....

Define © = { all parameters in Ty, Zs, Ry, Q¢, HT}
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Kalman Filter

Notation:
@ Conditional Means
St|t = E(st| Ft)
Stlt—-1 = E(s: | Ft-1)

Ytt-1 = E(ye | Fe-1)
e Conditional Covariances / Mean-Squared Errors

Qq(t | 1) = Cov(st | Fr) = E[(sc—stje)(sc = sele)]
Qs(t|t—-1) = Cov(st|Ft-1) = E[(st— 5t|t—1)(5t - St\t—l)T]
Qt|t—1) = Cov(y:|Fe1) = El¥e = yege-1)(e = veje-1)]

e Observation Innovations /Residuals
&= (e — yt|t—1) =Yt — Zt5t|t—1
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Kalman Filter: Four Steps

(1) Prediction Step: Predict state vector and observation vector
at time t given Fi_1

Stje—1 = Tt—1St—1]t-1
Ytjt—1 = Ztst\t—l
Predictions are conditional means with mean-squared errors

(MSEs):
Qi(t|t—1) = Cov(st| Fr-1) = Tt_lCov(st,”t,l)Tttl + Qrn,
= TQ(t—1]t-1)T] +RQR]
Qy(t |t—1) = Cov(y: | Fi-1)= ZtCOV(5t|t—1)ZtT + Qe,

Z:Qs(t |t —1)Z] + H;
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Kalman Filter: Four Steps

(2) Correction / Filtering Step: Update the prediction of the
state vector and its MSE given the observation at time t:
St|t = St|t—1 T+ Ge(yr — Yt|t—1)
Qs(t]t) =Qs(t|t—1)— GQy(t | t—1)G
where
G =Qs(t—1])Z7[Qs(t -1 t)]!
is the Filter Gain matrix.

(3) Forecasting Step: For times t’ > t, the present step, use the
following recursion equations for t/ =t +1,t+2,...

Se/|¢ = Tt’—lst’—l\t

Qs(tl | t) = Tt’—lﬂs(tl -1 | t) Tt7’——1 + QRHW
Y/t = Zvsy_1jt

Qy(t/ | t) = Zt’Qy(t/ -1 | t)ZtT + Qet/
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Kalman Filter: Four Steps

(4) Smoothing Step: Updating the predictions and MSEs for
times t’ < t to use all the information in F; rather than just Fy .
Use the following recursion equations for t' =t —1,t —2,...

St/|t = St t St’(st’+1\t - 5t’+1|t’)
Qs(t' | t) = Qs(t'|t) = Se[Qs(t/ +1|t)—Qs(t' +1]t)S]
where

Se=Qs(t' | )TT[Qs(t + 1| ¢)]~
is the Kalman Smoothing Matrix.
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Kalman Filter: Maximum Likelihood

Likelihood Function
Given 6 = { all parameters in T, Z;, Ry, Qt, HT}, we can write the
likelihood function as:
L(O) = p(y1;-- -, y1:0) = p(y1: 0)p(y2 | y1:0) -+ P(yT [ y1:-- - y7—1:0)
Assuming the transition errors (7;) and observation errors (e;) are
Gaussian, the observations y; have the following conditional
normal distributions:

[ve | Fee1: 0] ~ Nlyzje—1,Q(t | £ = 1)]
The log likelihood is:

1) = log p(y1,...,y1:0)
= 2,7—1/0g p(y,,]-'t 1 6)
_leog(27r) : t 1 log|Q,(t | t —1)]
2 ;’—21 [( }’t|t—1) [Qy(t | t— 1)]_1(}’t - }’t|t—1)]
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Kalman Filter: Maximum Likelihood

Computing ML Estimates of 0

@ The Kalman-Filter algorithm provides all terms necessary to
compute the likelihood function for any 6.

@ Methods for maximizing the log likelihood as a function of 6

o EM Algorithm; see Dempster, Laird, and Rubin (1977).
o Nonlinear optimization methods; e.g., Newton-type methods
o For T — oo, the MLE 7 is
o Consistent: 87 — 6, true parameter.
° Asymptotlcally normally dlstrlbuted
br—0 D N(O 7Y
where
Ir = E[(&log L(0))(log L(6))T]
(_1) x E [(89897' IOg L(e)]
is the Fisher Information Matrix for 6
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Kalman Filter

Note:

@ Under Gaussian assumptions, all state variables and
observation variables are jointly Gaussian, so the
Kalman-Filter recursions provide a complete specification of
the model.

e Initial state vector s; is modeled as N(us,,Q2s(1)), where the
mean and covariance parameters are pre-specified. Choices
depend on the application and can reflect diffuse (uncertain)
initial information, or ergodic information (i.e., representing
the long-run stationary distribution of state variables).

e Under covariance stationary assumptions for the {n;} and
{€+} processes, the recursion expressions are still valid for the
conditional means/covariances.
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