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Cointegration

An m−dimensional stochastic process {Xt} = {. . . ,Xt−1,Xt , . . .}
is I (d), Integrated of order d if the d-differenced process

∆dXt = (1− L)dXt is stationary.
If {Xt} has a VAR(p) representation, i.e.,

Φ(L)Xt = εt , where Φ(L) = I − A1L− A2 − · · · − ApLp.
then Φ(L) = (1− L)dΦ∗(L)
where Φ∗(L) = (1− A∗1L− A∗2L2 − · · ·A∗mLm) specifies the
stationary VAR(m) process {∆dXt} with m = p − d .
Issue:

Every component series of {Xt} may be I (1), but the process
may not be jointly integrated.

Linear combinations of the component series (without any
differencing) may be stationary!

If so, the multivariate time series {Xt} is “Cointegrated”
MIT 18.S096 Time Series Analysis III 3
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Consider {Xt} where Xt = (x1,t , x2,t , . . . , xm,t)
′ an m-vector of

component time series, and each is I (1), integrated of order 1.
If {Xt} is cointegrated, then there exists an m-vector
β = (β1, β2, . . . , βm)′ such that

β′Xt = β1x1,t + β2x2,t + · · ·+ βmxm,t ∼ I (0),
a stationary process.

The cointegration vector β can be scaled arbitrarily, so
assume a normalization:

β = (1, β2, . . . , βm)′

The expression: β′Xt = ut , where {ut} ∼ I (0) is equivalent
to:

x1,t = (β2x2,t + · · ·βmxm,t) + ut ,
where

β′Xt is the long-run equilibrium relationship
i.e., x1,t = (β2x2,t + · · ·βmxm,t)

ut is the disequilibrium error / cointegration residual.

MIT 18.S096 Time Series Analysis III 4



Time Series Analysis III

Cointegration: Definitions
Cointegrated VAR Models: VECM Models
Estimation of Cointegrated VAR Models
Linear State-Space Models
Kalman Filter

Examples of Cointegration

Term structure of interest rates: expectations hypothesis.

Purchase power parity in foreign exchange: cointegration
among exchange rate, foreign and domestic prices.

Money demand: cointegration among money, income, prices
and interest rates.

Covered interest rate parity: cointegration among forward and
spot exchange rates.

Law of one price: cointegration among identical/equivalent
assets that must be valued identically to limit arbitrage.

Spot and futures prices.
Prices of same asset on different trading venues
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Cointegrated VAR Models: VECM Models

The m-dimensional multivariate time series {Xt} follows the
VAR(p) model with auto-regressive order p if

Xt = C + Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt + η−p t

where
C = (c1, c2, . . . , cm)′ is an m-vector of constants.
Φ1,Φ2, . . . ,Φp are (m ×m) matrices of coefficients
{ηt} is multivariate white noise MWN(0m,Σ)

The VAR(p) model is covariance stationary if
det Im − (Φ 2 p

1z + Φ2z + · · ·+ Φpz ) = 0
has roots outside

[
|z | ≤ 1 for complex z .

]
Suppose {Xt} is I (1) of order 1. We develop a Vector Error
Correction Model representation of this model by successive
modifications of the model equation:
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VAR(p) Model Equation
Xt = C + Φ1Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt−p + ηt

Subtract Xt−1 from both sides:
∆Xt = Xt − Xt−1 = C + (Φ1 − Im)Xt−1 + Φ2Xt−2 + · · ·+ ΦpXt−p + ηt

Subtract and add (Φ1 − Im)Xt−2) from right-hand side:
∆Xt = C + (Φ1 − Im)∆Xt−1 + (Φ2 + Φ1 − Im)Xt−2 + · · ·+ ΦpXt−p + ηt

Subtract and add (Φ2 + Φ1 − Im)Xt−3) from right-hand side:
∆Xt = C+(Φ1−Im)∆Xt−1+(Φ2+Φ1−Im)∆Xt−2+(Φ3+Φ2+Φ1−Im)Xt−3+· · ·

=⇒ ∆Xt = C + (Φ1 − Im)∆Xt−1

+(Φ2 + Φ1 − Im)∆Xt−2

+(Φ3 + Φ2 + Φ1 − Im)∆Xt−3 + · · ·
+(Φp−1 + · · ·+ Φ3 + Φ2 + Φ1 − Im)∆Xt−(p−1)

+(Φp + · · ·+ Φ3 + Φ2 + Φ1 − Im)Xt−p + ηt
Reversing the order of incorporating ∆-terms we can derive

∆Xt = C + ΠXt−1 + Γ1∆Xt−1 + · · ·+ Γp−1∆Xt−(p−1) + ηt
where: Π = (Φ1 + Φ2 + · · ·Φp − Im) and Γk = (−

∑p
j=k+1 Φj),

k = 1, 2, . . . , p − 1.MIT 18.S096 Time Series Analysis III 8
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Vector Error Correction Model (VECM)

The VAR(p) model for {Xt} is a VECM model for {∆Xt}.
∆Xt = C + ΠXt + Γ1∆Xt−1 + · · ·+ Γp ∆−1 Xt−(p−1) + ηt

By assumption, the VAR(p) model for {Xt} is I (1), so the VECM
model for {∆Xt} is I (0).

The left-hand-side ∆Xt is stationary / I (0).

The terms on the right-hand-side ∆Xt j , j = 1, 2, . . . , p− − 1
are stationary / I (0).

The term ΠXt must be stationary /I (0).

This term ΠXt contains any cointegrating terms of {Xt}.
Given that the VAR(p) process had unit roots, it must be that
Π is singular, i.e., the linear transformation eliminates the unit
roots.
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The matrix Π is of reduced rank r < m and either

rank(Π) = 0 and Π = 0 and there are no cointegrating
relationships.
rank(Π) > 0 and Π defines the cointegrating relationships.

If cointegrating relationships exist, then rank(Π) = r with
0 < r < m, and we can write

Π = αβ′,
where α and β are each (m × r) matrices of full rank r .

The columns of β define linearly independent vectors which
cointegrate Xt .

The decomposition of Π is not unique. For any invertible
(r × r) matrix G ,

Π = α β′∗ ∗
where α = αG and β′ = G−1β′.∗ ∗

MIT 18.S096 Time Series Analysis III 10
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Estimation of Cointegrated VAR Models

Unrestricted Least Squares Estimation

Sims, Stock, and Watson (1990), and Park and Phillips
(1989) prove that in estimation for cointegrated VAR(p)
models, the least-squares estimator of the original model
yields parameter estimates which are:

Consistent.
Have asymptotic distributions identical to those of
maximum-likelihood estimators.
Constraints on parameters due to cointegration (i.e., the
reduced rank of Π) hold asymptotically.

Maximum Likelihood Estimation*

Banerjee and Hendry (1992): apply method of concentrated
likelihood to solve for maximum likelihood estiamtes.

* Advanced topic for optional reading/study
MIT 18.S096 Time Series Analysis III 12
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Estimation of Cointegrated VAR Models

Maximum Likelihood Estimation (continued)

Johansen (1991) develops a reduced -rank regression
methodology for the maximum likelihood estimation for
VECM models.

This methodology provides likelihood ratio tests for the
number of cointegrating vectors:

Johansen′s Trace Statistic (sum of eigenvalues of Π̂)
Johansen′s Maximum-Eigenvalue Statistic
(max eigenvalue of Π̂).
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Linear State-Space Model

General State-Space Formulation
yt : (k × 1) observation vector at time t
st : (m × 1) state-vector at time t
εt : (k × 1) observation-error vector at time t
ηt : (n × 1) state transition innovation/error vector

State Equation / Transition Equation
St+1 = Ttst + Rtηt

where
Tt : (m ×m) transition coefficients matrix
Rt : (m × n) fixed matrix; often column(s) of Ip
ηt : i.i.d. N(0n,Qt), where Qt (n × n) is positive definite.
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Linear State-Space Model Formulation

Observation Equation / Measurement Equation
yt = Ztst + εt

where
Zt : (k ×m) observation coefficients matrix
εt : i.i.d. N(0k ,Ht), where Ht (k × k) is positive definite.

Joint Equation[
st+1

]
=

[
Tt

]
st +

yt Zt

= Φtst + ut ,

[
Rtηt
εt

]
where

ut =

[
Rtηt

]
RtQ RT

∼ t 0
N(0,Ω), with Ω = t

εt 0 Ht

Note: Often model is time invariant (Tt , R

[
t , Zt , Qt , Ht constants)

]
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CAPM Model with Time-Varying Betas

Consider the CAPM Model with time-varying parameters:

rt = αt + βtrm,t + εt , εt ∼ N(0, σ2
ε )

αt+1 = αt + ν 2
t , νt ∼ N(0, σν)

βt+1 = βt + ξt , ξt ∼ N(0, σ2
ξ )

where
rt is the excess return of a given asset
rm,t is the excess return of the market portfolio
{εt}, {νt}, {ξt} are mutually independent processes

Note:
{αt} is a Random Walk with i.i.d. steps N(0, σ2

ν)
{βt} is a Random Walk with i.i.d. steps N(0, σ2

ξ )
(Mutually independent processes)
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Time-Varying CAPM Model: Linear State-Space Model

State[ Equation
αt+1

βt+1

] [
αt t

βt

]
+

[
ν

= [ ] [ ξt
1 0 αt

]
=

0 1 βt

] [
1 0 νt+
0 1

] [
ξt

Equivalently:

]
st+1 = Ttst + Rtηt

where:

st =

[
αt 1 0

, Tt = Rt = ,[ βt
] [

0 1

ν

]
tηt =
ξt

]
∼ N2(02,Qt), with Qt =

Terms:

[
σ2
ν 0

0 σ2
ξ

]
state vector st , transition coefficients Tt

transition white noise ηt
MIT 18.S096 Time Series Analysis III 18
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Time-Varying CAPM Model: Linear State-Space Model

Observation Equation / Measurement Equation[ ] [ αtrt = 1 rm,t βt

]
+ εt

Equivalently
rt = Ztst + εt

where
Zt =

[
1 rm,t

]
is the observation coefficients matrix

εt ∼ N(0,Ht), is the observation white noise
with Ht = σ2

ε .
Joint System[ of Equations

st+1

yt

]
=

[
Tt Rtηtst +
Zt

] [
εt

]
[

R Ω T
t ηR

= Φtst + ut with Cov(ut) = t 0
0 Ht

]
MIT 18.S096 Time Series Analysis III 19
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Linear Regression Model with Time-Varying β

Consider a normal linear regression model with time-varying
regression coefficients:

yt = xTt βt + εt , where ε 2
t are i.i.d. N(0, σε ).

where
xt = (x1,t , x2,t , . . . , x

t
p,t) , p-vector of explanatory variables

βt = (β1,t , β2,t , . . . , βp,t)
t , regression parameter vector

and for each parameter component j , j = 1, . . . , p,
βj ,t+1 = βj ,t + ηj ,t , with {ηj ,t , t = 1, 2, . . .} i.i.d. N(0, σ2

j ).

i.e., a Random Walk with iid steps N(0, σ2
j ).

Joint State-Space[
st+1

] Equations

=

[
Ip
T

]
st +

[
ηt
]

, with state vector st = β
yt xt ε t

t

=

[
Tt

Zt

]
st +

[
Rtηt
εt

]
MIT 18.S096 Time Series Analysis III 20
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(Time-Varying) Linear Regression as a State-Space Model

where
ηt ∼ N(0,Qt), with Qt = diag(σ2

1, . . . , σ
2
p)

εt ∼ N(0,Ht), with Ht = σ2
ε .

Special Case: σ2
j ≡ 0: Normal Linear Regression Model

Successive estimation of state-space model parameters with
t = p + 1, p + 2, . . . , yields recursive updating algorithm for
linear time-series regression model.
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Autoregressive Model AR(p)

Consider the AR(p) model
φ(L)yt = εt

where
φ(L) = 1−

∑p j 2
j=1 φjL and {εt} i.i.d. N(0, σε ).

so
yt+1 =

∑p
j=1 φjyt+1−j + εt+1

Define state vector:
st = (yt , yt 1, . . . , y− t−p+1)T

Then 
yt+1

 
φ1 φ2 · · · φp−1 φp yt ε

y t+1 t  1
y −1


1

st+1 =

  0 · · · 0 0
0 t

.
 t =  y

0 1 · · · 0 0 −
. + .   . . . . .

   
. . . . . .. . . . . .


..

y

 
y t (p 1)

 
..
0


t−(p−2) 0 0 · · · 1 0

  
− −

 
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State-Space Model for AR(p)

State Equation
st+1 = Ttst + Rtηt ,

where 
φ1 φ 2 · · · φp 1 φ 1− p

T

 
t =

 1 0 · · · 0 0
0 1 0 0


. .

·
.
· ·

. .. . . . .. . . . .

 0  , R 0
t =


,   ...


0 0 · · · 1 0 0


and


{ηt = ε 2

t+1} i .i .d .N(0, σε ).
Observation Equation /Measurement Equation

yt =
=

[
1 0 0 · · · 0

]
st

Ztst (no measurement error)
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Moving Average Model MA(q)

Consider the MA(q) model
yt = θ(L)εt

where
θ(L) = 1 +

∑q
j=1 θ

j
jL and {εt} i.i.d. N(0, σ2

ε ).
so

yt+1 = εt+1 +
∑q

j=1 θjεt+1−j

Define state vector:
st = (εt 1, εt 2, . . . , ε− − t−q)T

Then  0 0 · · · 0 0
εt

 
ε   t 1 εt1 0 −

εt 1
· · · 0 0

− ε· t 2 0 0 1 · · 0 0
st+1 = . =


+

.


−

 
 . .

. . . . . . .


. . . . . .. . .


.. .

ε

 
.


t−(q


ε−1)

 
0 1 0


t−q0

   
·

   
0


· ·


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State-Space Model for MA(q)

State Equation
st+1 = Ttst + Rtηt ,

where 
0 0 · · · 0 0 1 1 0 · ·

T =

 · 0 0 0 0 1


t =

.
· · · 0 0


0


t , R , . . . . .. . . . ..

 
.. . . .

 
.


0 0 · · · 1 0

  
0

 
and


{ηt = εt} i .i .d .N(0, σ2

ε ).
Observation Equation / Measurement Equation

yt =
[
θ1 θ2 · · · θq−1 θq

]
st + εt

= Ztst + εt
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Auto-Regressive-Moving-Average Model ARMA(p, q)

Consider the ARMA(p, q) model
φ(L)yt = θ(L)εt

where
− pφ(L) = 1 j=1 φjL

j and
q

{εt} i.i.d. N(0, σ2
ε ).

θ(L) = 1 +

∑∑
j=1 θjL

j and {εt} i.i.d. N(0, σ2
ε ).

so
yt+1 =

∑p
j=1 φjyt+1 j + εt+1 +

∑p
j=1 θ ε− j t+1−j

Set m = max(p, q + 1) and define
{ mφ1, . . . , φm} : φ(L) = 1−

∑
j=1 φjL

j

{ } −
∑mθ1, . . . , θm : θ(L) = 1 j=1 θjL

j

i.e.,
φj = 0 if p < j ≤ m
θj = 0 if q < j ≤ m

So: {yt} ∼ ARMA(m,m − 1)
MIT 18.S096 Time Series Analysis III 26
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State Space Model for ARMA(p,q)

Harvey (1993) State-Space Specification
Define state vector:

st = (s1,t , s
T

2,t , . . . , sm,t) , where m = max(p, q + 1).
recursively:

s1,t = yt : Use this definition and the main model equation to
define s2,t and ηt :

qy +1 =
∑p

t j=1 φjyt+1−j + εt+1 + j=1 θjεt+1−j
s1,t+1 = φ1s1,t + 1 · s2,t + ηt

where

∑
s2,t =

∑m m 1
i=2 φiyt+1−i +

∑
j=1
− θjεt+1−j

ηt = εt+1
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• Use s1,t = yt ,∑s2,t , and ηt = εt+1: to define s3,t
m m 1s2,t+1 = i=2 φiyt+2 j + −

− j=1 θjεt+2
m

−j
m 1= φ2yt + 1 · [

∑∑
i=3 φiyt+2−j +

∑
j=2
− θjεt+2−j ] + (θ1εt+1)

= φ2s1,t + 1 · [s3,t ] + R2,1ηt
where

m m 1s3,t =
∑

i=3 φiyt+2 j +
∑

j=2
− θ ε− j t+2−j

R2,1 = θ1

ηt = εt+1

• Use s1,t = yt ,∑s3,t , and ηt = εt+1: to define s4,t
m m 1s3,t+1 = i=3 φiyt+3 j + −

− j=2 θjεt+3
m

−j
m 1= φ3yt + 1 · [

∑∑
i=4 φiyt+3−j +

∑
j=3
− θjεt+3−j ] + (θ2εt+1)

= φ3s1,t + 1 · [s4,t ] + R3,1ηt
where

m m 1s4,t =
∑

i=4 φiyt+3 j +
∑

j=3
− θ ε− j t+3−j

R3,1 = θ2

ηt = εt+1
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• Continuing until
sm,t =

∑m
i=m φiyt+(m−1)−j +

∑m−1
j=m−1 θjεt+m−1−j

= φmyt−1 + θm−1εt
which gives

sm,t+1 = φmyt + θm−1εt+1 = φms1,t + Rm,1ηt
where Rm,1 = θm and−1 ηt = εt+1

• All the equations can be written together:
st+1 = Tst + Rηt
yt = Zst (no measurement error term)

where
φ1 1 0 · · · 0 1
φ2 0 1 · 0 1
. . .

·
.
· θ

. .T =

 
, R


 . . . . .. . . . . =


. and .

φm 0−1 0


· · · 1

 
0 0

  
φm · · 0

 
θm−2


· θm−1


ηt i.i.d. N(0, σ2

  
ε ), and Z =


[

1 0 · · · 0
]

(1×m)
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Kalman Filter

Linear State-Space[ Model: Joint Equation

st+1

yt

]
=

[
Tt

Zt

]
st +

[
Rtηt
εt

= Φtst + ut ,

]
where {ηt} i .i .d .Nn(0,Qt), {εt} i .i .d .Nk(0,Ht), so

Rtηt RtQ
T

ut = ∼ tR 0
N t
m+k(0m+k ,Ωt), with Ωt =

εt 0 Ht

For Ft =

[ ] [ ]
{y1, y2, . . . , yt}, the observations up to time t, the

Kalman Filter is the recursive computation of the probability
density functions:

p(st+1 | Ft), t = 1, 2, . . .
p(st+1, yt+1 | Ft), t = 1, 2, . . .
p(yt+1 | Ft), t = 1, 2, . . . .

Define Θ = { all parameters in Tt ,Zt ,Rt ,Qt ,HT}
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Kalman Filter

Notation:

Conditional Means
st|t = E (st | Ft)
st = E (s )|t−1 t | Ft−1

yt|t−1 = E (yt | Ft−1)

Conditional Covariances / Mean-Squared Errors
Ωs(t | t) = Cov(s T

t | Ft) = E [(st − st )(s s ) ]|t t − t|t
Ωs(t | t − 1) = Cov(st | Ft 1) = E [(s− t − st|t−1)(st − st )T ]|t−1

Ωy (t | t − 1) = Cov(yt | Ft 1) = E [(yt − yt t 1)(yt − y T
t ]− − |t−1)|

Observation Innovations /Residuals
ε̃t = (yt − yt|t−1) = yt − Ztst|t−1
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Kalman Filter: Four Steps

(1) Prediction Step: Predict state vector and observation vector
at time t given Ft−1

st t 1 = T| − t−1st−1|t−1

yt|t−1 = Ztst|t−1

Predictions are conditional means with mean-squared errors
(MSEs):

Ωs(t | t − 1) = Cov(s T
t | Ft−1) = Tt−1Cov(st−1 )T + Ω

T
|t−1 t−1 Rtηt

= TtΩs(t − 1 | t − 1)T T
t + RtQtRt

Ωy (t | t − 1) = Cov(y T
t | Ft−1) = ZtCov(st|t−1)Zt + Ωεt

= ZtΩs(t | t − 1)ZT
t + Ht
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Kalman Filter: Four Steps

(2) Correction / Filtering Step: Update the prediction of the
state vector and its MSE given the observation at time t:

st t = s +| t|t−1 Gt(yt − yt|t )−1

Ωs(t | t) = Ωs(t | t − 1)− GtΩy (t | t − 1)GT
t

where
Gt = Ωs(t − 1 | t)ZT

t [Ω 1
s(t − 1 | t)]−

is the Filter Gain matrix.

(3) Forecasting Step: For times t ′ > t, the present step, use the
following recursion equations for t ′ = t + 1, t + 2, . . .

st′|t = Tt′−1st′−1|t
Ωs(t ′ | t) = Tt′−1Ωs(t ′ − 1 | t)TT

t′−1 + ΩRt′ηt′

yt′|t = Zt′st′−1|t
Ωy (t ′ | t) = Zt′Ωy (t ′ − 1 | t)ZT

t + Ω′ εt′
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Kalman Filter: Four Steps

(4) Smoothing Step: Updating the predictions and MSEs for
times t ′ < t to use all the information in Ft rather than just Ft′ .
Use the following recursion equations for t ′ = t − 1, t − 2, . . .

st t = s′| t|t + St′(st′+1|t − st′+1 )|t′
Ωs(t ′ | t) = Ωs(t ′ | t ′)− St′ [Ωs(t ′ + 1 | t ′)− Ωs(t ′ + 1 | t) ST

t′

where
St′ = Ωs(t ′ | t ′)TT 1

t [Ωs(t ′ + 1 | t ′)]′
−

is the Kalman Smoothing Matrix.
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Kalman Filter: Maximum Likelihood

Likelihood Function
Given θ = { all parameters in Tt ,Zt ,Rt ,Qt ,HT}, we can write the
likelihood function as:
L(θ) = p(y1, . . . , yT ; θ) = p(y1; θ)p(y2 | y1; θ) · · · p(yT | y1, . . . , yT−1; θ)

Assuming the transition errors (ηt) and observation errors (εt) are
Gaussian, the observations yt have the following conditional
normal distributions:

[yt | Ft 1; θ] ∼ N[yt t 1,Ωy (t 1)]| − | t− −
The log likelihood is:

l(θ) = log∑ p(y1, . . . , yT ; θ)
T= i=1 log p(yi ;Ft 1; θ)

= −kT
−

2 log(2π)− 1
2

∑T
t=1 log |Ωy (t | t − 1)|

−1 T (yt y ) [Ωy (t t 1)] 1(yt y )2

∑
t=1

[
− t t 1

′
− | − −
| − t|t−1

]
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Kalman Filter: Maximum Likelihood

Computing ML Estimates of θ

The Kalman-Filter algorithm provides all terms necessary to
compute the likelihood function for any θ.

Methods for maximizing the log likelihood as a function of θ

EM Algorithm; see Dempster, Laird, and Rubin (1977).
Nonlinear optimization methods; e.g., Newton-type methods
For T →∞, the MLE θ̂T is

Consistent: θT −→ θ, true parameter.
Asymptotically normally distributed:

θ̂T − θ D N(0, I−1

−−→ T )
where

IT = E
[
( ∂
∂θ

log L(θ))( ∂
∂θ

log L(θ))T
]

= (−1)× E
[
( ∂2

log
∂θ∂θT

L(θ)

is the Fisher Information Matrix for θ

]
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Kalman Filter

Note:

Under Gaussian assumptions, all state variables and
observation variables are jointly Gaussian, so the
Kalman-Filter recursions provide a complete specification of
the model.

Initial state vector s1 is modeled as N(µS1 ,Ωs(1)), where the
mean and covariance parameters are pre-specified. Choices
depend on the application and can reflect diffuse (uncertain)
initial information, or ergodic information (i.e., representing
the long-run stationary distribution of state variables).

Under covariance stationary assumptions for the {ηt} and
{εt} processes, the recursion expressions are still valid for the
conditional means/covariances.
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