
18.S096 Problem Set 3 Fall 2013
Regression Analysis

Due Date: 10/8/2013

The Projection(‘Hat’) Matrix and Case Influence/Leverage

Recall the setup for a linear regression model

y = Xβ + ε

where y and ε are n−vectors, X is an n×p matrix (of full rank p ≤ n)
and β is the p-vector regression parameter.

The Ordinary-Least-Squares (OLS) estimate of the regression param-
eter is:

β̂ = (XTX)−1XTy

The vector of fitted values of the dependent variable is given by:

ŷ ˆ= Xβ = X(XTX)−1XTy = Hy,

where H =X(XTX)−1XT is the n× n “Hat Matrix”

and the vector of residuals is given by:

ε̂ = (In −H)y,

1 (a) Prove that H is a projection matrix, i.e., H has the following
properties:

• Symmetric: HT = H

• Idempotent: H ×H = H

1 (b) The ith diagonal element of H, Hi,i is called the leverage of case
i. Show that

dŷi = Hi,idyi

1 (c) If X has full column rank p,
pAverage(Hi,i) = n

Hint: Use the property: tr(AB) = tr(BA) for conformal matrices
A and B.

1 (d) Prove that the Hat matrix H is unchanged if we replace the (n×p)
matrix X by X ′ = XG for any non-singular (p× p) matrix G.
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1 (e) Consider the case where X is n × (p + 1) with a constant term
and pindependent variables defining the regression model, i.e.,

1 x · ·

X =
 1,1 x1,2 · x1,p  1 x2,1 x2,2 · · · x2,p

. . . . .. . . . .. . . . .
1 xn,1 xn,2 · · · xp,n


Define



G =

G as follows:
1 −x̄1 −x̄ · 2 · · −x̄p 0 1 0 · · · 0 0 0 1


.

· · · 0 . . .. . . .. . . . 0


0


where x̄


j =


By (d), the
the original

∑0 n

· · · 1

i=1 xi,j/n, for j = 1, 2, . . . , p.

regression model with X ′ = XG is equivalent to
regression model in terms of having the same fitted

values ŷ and residuals ε̂

• If β = (β0, β1, . . . , βp)
T is the regression parameter for X,

show that
β′ = G−1β is the regression parameter for X ′.

Solve for G−1 and provide explicit formulas for the elements
of β′.

• Show that:

[X ′
T
X ′] =

x

[
n 0Tp
0 T
p X

]
 X

 1,1 − x̄1 x1,2 − x̄2 · · · x1,p − x̄p x2,1
where

− x̄1 x2,2 − x̄2 · · · x2,p − x̄p
X =  . . . .. . . .


. . . .

xn,1 − x̄1 xn,2 − x̄2 · · · xp,n − x̄p


• Prove the following formula for elements of the projection/hat


matrix:

Hi,j = 1 + (xi − x̄)T [X TX ]−1(xjn − x̄)
where xi = (xi,1, xi,2, . . . xi,p)

T is the vector of independent
variable values for case i, and x̄ = (x̄1, x̄2, . . . , x̄p)

T .
The leverage of case i, Hi,i, increases with the second term,
the squared Mahalanobis distance between xi and the mean
vector x̄.
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Case Deletion Influence Measures

2 (a) Sherman-Morrison-Woodbury (S-M-W) Theorem: Suppose that
A is a p × p symmetric matrix of rank p, and a and b are each
q × p matrices of rank q < p. Then provided inverses exist

(A+ aT b)−1 = A−1 −A−1aT (Iq + bA−1aT )−1bA−1.

Prove the theorem.
ˆ2 (b) Case deletion impact on β: Apply the S-M-W Theorem to show

that the least squares estimate of β when the ith case is deleted
from the data is

(XTX)−1xˆ ˆβ iε̂i
(i) = β− ,1−Hi,i

where xTi is the ith row of X and ε̂i = yi − ŷi = yi − ˆxTi β.

2 (c) A popular influence measure for a case i is the ith Cook’s distance

CDi =
(

1
pσ̂2

)
|ŷ − ŷ(i)|2

where ŷ(i) = Xβ̂(i). Show that

CDi =
ε̂2i
pσ̂2 · Hi,i

(1−Hi,i)2

2 (d) Case deletion impact on σ̂2 : Let σ̂2 be the unbiased estimate(i)

of the residual variance σ2 when case i is deleted from the data.
Show that:

σ̂2
1

= σ̂2+(i)

(
n−p−1

)(
σ̂2 − ε̂2i

1−Hi,i

Sequential ANOVA in Normal Linear Regression

)
Models via the QR Decomposition

Recall from the lecture notes that the QR-decomposition, X = QR
is a factorization of the n × p matrix X into Q, an n

T
× p column-

orthonormal matrix (Q Q = Ip, the p × p identify matrix) times R,
a p× p upper-triangular matrix.

Denoting the jth column of X and of Q by X[j] and Q[j], respectively,
we can write out the QR-decomposition for X, column-wise:

X[1] = Q[1]R1,1

X[2] = Q[1]R1,2 +Q[2]R2,2

X[3] = Q[1]R1,3 +Q[2]R2,3 +Q[3]R3,3
...

X[p] = Q[1]R1,p +Q[2]R2,p +Q[3]R3,p + · · ·+Q[p]Rp,p
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A common issue arising in a regression analysis with p explanatory
variables is whether just the first k (< p) explanatory variables (given
by the first k columns of X) enter in the regression model. This can
be expressed as an hypothesis about the regression parameter β,

H0: βk+1 = βk+2 = · · · = βp ≡ 0.

ˆ
ˆ3 (a) Consider the estimate β0 =

(
βI where

0p−k

β̂I = (XT
I XI)

−1

)
XT
I y

XI =
[
X[1]X[2] · · ·X[k]

ˆShow that β0 is the constrained least-squares

]
estimate of β cor-

responding to the hypothesis H0, i.e.,

β̂ minimizes: SS(β) = (y −Xβ)T0 (y −Xβ)

subject to

β̂j = 0, j = k + 1, k + 2, . . . , p.

3 (b) Show that the QR-decomposition of XI is XI = QIRI , where QI
is the matrix of the first k columns of Q and RI is the upper-left
k × k block of R. Furthermore, verify that:

β̂I = R−1I QTI y, and

ŷI = HIy,

where HI = QIQ
T
I , the n × n projection/Hat matrix under the

null hypothesis.

3 (c) From the lecture notes, recall the definition of

A =

[
QT

W T

]
, where

• A is an (n× n) orthogonal matrix (i.e. AT = A−1)

• Q is the column-orthonormal matrix in a Q-R decomposition
of X

Note: W can be constructed by continuing the Gram-Schmidt
Orthonormalization process (which was used to construct Q
from X) with X∗ = [ X In ].

Then, consider [
QTy

] [
zQ

]
(p

z = Ay =
W T =

× 1)

y zW (n− p)× 1

Prove the following relationships for the unconstrained regression
model:
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• yT y = y2 + y2 + · · ·+ y21 2 n

= z21 + z22 + · · ·+ z2n
= zT z

• ŷT ŷ = ŷ21 + ŷ2 2
2 + · · ·+ ŷn

= z21 + z22 +
2 2

· +
T

· · z2k + · · ·+ z2p

• ε̂ ε̂ = ε̂1 + ε̂2 + · · ·+ ε̂2n
= z2p+1 + z2p+2 + · · ·+ z2n

Prove the following relationships for the constrained regression
model:

• yT y = y21 + y22 + · · ·+ y2n
= z2 + z2 + · · ·+ z21 2 n

= zT z

• ŷT ŷ = (ŷ )2 + (ŷ )2 + · · ·+ (ŷ )2I I I 1 I 2 I n

= z21 + z22 + · · ·+ z2k

• ε̂T ˆ
I ε̂I = (εI)

2 ˆ 2 ˆ 2
1 + (εI)2 + · · ·+ (εI)n

= z2k+1 + · · ·+ z2p + z2p+1 + z2p+2 + · · ·+ z2n

3 (d) Under the assumption of a normal linear regression model, the
lecture notes

z =

=

(detail ho)w the distribution

zQ ∼ N
z n
W

[( )of z = Ay

Rβ
, σ2I

O n
n−p

] is

⇒
zQ ∼ Np[(Rβ), σ

2Ip]

zW ∼ N 2
(n I−p)[(O(n−p), σ (n−p)]

and zQ and zW are independent.

• For the unconstrained (and the constrained) model, deduce
that:

SS = ε̂T ε̂ ∼ σ2 2
ERROR × χn−p

a Chi-Square r.v. with (n− p) degrees of freedom scaled by
σ2.

• For the constrained model under H0, deduce that:
SSREG(k+1,...,p 1,2,...,k) = ŷT ŷ| − ŷTI ŷI

= ε̂T T
I ε̂I − ε̂ ε̂

= z2 + · · · z2k+1 p

∼ σ2 × χ2
p−k,

a σ2 multiple of a Chi-Square r.v. with (p − k) degrees of
freedom which is independent of SSERROR.

• Under H0, deduce that the statistic:
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ˆ SS
F = REG(k+1,...,p|1,2,...,k)/(p−k)

SSERROR/(n−p)

has an F distribution with (p−k) degrees of freedom ’for the
numerator’ and (n − p) degrees of freedom ‘for the denomi-
nator.’

It is common practice to summarize in a table the calculations
of the F -statistics for testing the null hypothesis that the last
(p− k) components of the regression parameter are zero:

ANOVA Table

Source Sum of
Squares

Degrees of
Freedom

Mean
Square

F-Statistic

Regression on
‘1, 2, . . . , k’

TŷI ŷI k —

Regression on ‘k + 1, . . . , p’

Adjusting for ‘1, 2, . . . , k’

TŷT ŷ − ŷI ŷI (p-k) MS0 =
TŷT ŷ−ŷ ˆI yI

(p−k) F̂ =
MS0

MSError

Error ε̂T ε̂ (n− p) MSError =
ε̂T ε̂

(n−p)

Total Ty y n
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