Chapter 9

Jacobians of Matrix Transforms
(with wedge products)

9.1 Wedge Products (The “A” Notation)

The straightforward deﬁmtlon of the J acoblan for an n xn matrix function such as Y = X2 indicates
the construction of the n? x n? matrix 2L aY (perhaps this is best thought of as (n xn) by (nxn)—a
four dimensional construction) . Mathematlclans have invented a notation, wedge products, that
avoids the construction of this huge matrix and still formally achieves the same goal.

In this book we will wedge together differentials as illustrated in this example:

(2dz + z2dy + 5dw + 2dz) A (ydz — zdy) =
(—2z — z%y)dz A dy + 5y(dw A dz) — 5z(dw A dy) — 2y(dz A dz) + 2z(dy A dz)

Formally the wedge product is quite easy, it acts like multiplication except that it follows the
anticommutative law

(du A dv) = (—dv A du)

Generally
(pdu + gdr) A (rdu + sdr) = (pr — gs)(du A dr)

It therefore follows that
duAdu=0.

In the next section, we will explore the algebra a little further. Suffice it to say that any linear
combination of differentials is referred to as a 1-form. When we wedge two together, we get a
2-form, and so on. We are allowed to take linear combinations of 2-forms as in dz A dy + z2dy A dz
but we are not allowed to add 1-forms and 2-forms. dz + dz A dy is not defined!

Example 1: differential elements in a 2 x 2 matrix

Let Y = Y(X) be a 2 x 2 matrix, where X = (:cu :c12>

T21 22
3y11 yll yll Z/11 y12 yl? y12 y12
R dzi1+ o1 dw 9+ oot dzo; + o0 dzog o dzi1+ o1 d:c 9+ oo dzo; + Do dzog
dYy =
3y21 yZl yZl y21 y22 y22 yZZ y22
Ao dzi1+ 5o d:v 2+ ooy dzoi + Doos dzog R dzi1+ Do d:v 2+ oo dzo1 + Do dzog
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We have that the wedge product of all the elements is

Oyij
8.’Ekl

dyll A dy21 A dy12 A dy22 = det ( ) dz11 Adxzor Adzia Adzos .

Example 2: differential elements of an n X n matrix
IfY =Y(X) is an n X n matrix, then

A (0Y;) = det ‘ ( A\ daiy)

Notice that we use “/” to indicate the wedge product of the elements ignoring order.

Y
0T

Example 3: differential elements in an n x 1 vector
If we were to compute the determinant of an upper triangular matrix U we might write

Uy ok * * *
U922 * * *
U= ugz ok %
U44 *
Us5

here the *’s indicate “don’t care’s.”

If U is expressing a relationship between different differential quantities: dy = Udzx, then we
can write

dyi Adya Adys AdysAdys = (uiidzy +-- - ) A(ugedza+- - ) A(ugzdzs +- - ) A (uaadzs+ - - - ) Aussdes

where the ellipses indicate “don’t care’s” because of the commutative property of the wedge product.
We then have that

dyl A dy2 A dy3 A dy4 A dy5 = U11U22U33U44U55 d.f()l A d.’L‘2 A dl‘3 A d.’L‘4 A dl‘5 .

Experience has shown that this wedge notation is superior for expressing such determinants.

Notation:

Let
x1

T = : eR".
Tn

We have seen that it is natural to form dz; A dzy A - -+ A dz, which we may denote (dz), reserving
dz for the vector of differentials (1-forms). Notationally,

d(l?l n
dz = : while (dz) = /\ dz; =dz1 A... Ada,.

dz,, i=1

We will avoid any potential conflict in notation by using the parentheses in a manner consistent with
the description above. (It is rare that a matrix or vector is parenthesized by itself in mathematics.)
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Similarly if A € R™",
dai1 --- dai,

dA =
dapy -+ dap,

is a matrix of differentials, and we may form the exterior product

(dA) =dan Adaip A+ Adags =\ day; -
%,J=1,...,n
This suggests a general notation. If ® is some object, d® is a similar object of differentials, and
(d®) is the exterior product of independent elements in ®.
Thus if U is upper triangular, (dU) = A, ; duij or if L is unit lower triangular, (dL) = A, ; dli;.
Similarly,

If S is symmetric, (dS) = A;5; dsij-
If A is diagonal, (dA) = A, dA;.

If A is anti-symmetric, (dA) = A, da;; (Sign will not matter).

1<j

We may also get sloppy and write (dA)(dB) when strictly speaking we should write (dA4) A (dB).

9.2 Exterior Products (The Algebra)

Let V be an n-dimensional vector space over R. For p = 0,1,...,n we define the pth exterior
product. For p =0 it is R and for p =1 it is V. For p = 2, it consists of formal sums of the form

Z a; (uz A wi),
7
where a; € R and u;, w; € V. (We say “u; wedge v;.”) Additionally, we require that (au+v) Aw =
a(uANw)+ (v Aw), uA (bv+w) = b(uAv)+ (uAw) and u Au=0. A consequence of the last relation
is that w A w = —w A u which we have referred to previously as the anti-commutative law. We
further require that if eq, ..., e, constitute a basis for V', then e; A e; for ¢ < j, constitute a basis
for the second exterior product.

Proceeding analogously, if the e; form a basis for V' we can produce formal sums

ZC’Y(e’n Ney, N--e /\e’Yp)a
Y

where -y is the multi-index (y1,...,7p), where 41 < -+ < y,. The expression is multilinear, and the
signs change if we transpose any two elements.
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The table below lists the exterior products of a vector space V = {c¢;e;}.

P pth Exterior Product Dimension
0 VO=R 1
1 V=V ={ce;} n
3 V= {Zi<]—<k cijkei N ej N\ ek} n(n—1)(n—2)/6
» n
D VP = {Zi1<i2<...<ip Ciyig...ip€iy N€ig N ... A\ eip} »
n Vr={ce1NeaA...Nen} 1
n+1 vl = {0} 0

In this book V = {>_ ¢;dz;}, i.e. the 1-forms. Then VP consists of the p-forms, i.e. the rank p
exterior differential forms.

9.3 Integration Using Differential Forms

One nice property of our differential form notation is that if y = y(z) is some function from (a
subset of) R” to R", then the formula for changing the volume element is built into the identity

/ fdyi A ... Ady, = / fly(z))dzy A ... Adzy,
y(S) s

because the Jacobian emerges when we write the exterior product of the dy’s in terms of the dz’s.

We will only concern ourselves with integration of n-forms on manifolds of dimension n. In
fact, most of our manifolds will be flat (subsets of R™), or surfaces only slightly more complicated
than spheres. For example, the Stiefel manifold V,,, ,, of n by m orthogonal matrices @ (QQ = I,,,)
which we shall introduce shortly. Exterior products will give us the correct volume element for
integration.

If the z; are Cartesian coordinates on a flat manifold!, then (dz) = dz; A dza A ... dz, is the
correct volume element. For simplicity, this may be written as dxidzs ... dz, so as to correspond
to the Lebesgue measure. Let ¢; be the ith component of a unit vector ¢ € R*. Evidently, n
parameters is one too many for specifying points on the sphere. Unless ¢, = 0, we may use ¢;
through ¢, 1 as local coordinates on the sphere, and then dg, may be thought of as a linear
combination of the dg; for i < n. (3°,¢idg; = 0 because g'g = 1). However, the Cartesian volume
element dgidgs . ..dg, 1 is not correct for integrating functions on the sphere. It is as if we took
a map of the Earth and used Latitude and Longitude as Cartesian coordinates, and then tried to
make some presumption about the size of Greenland?.

Integration:

"hyperplanes are flat, an ordinary cylinder is flat (because it can be rolled), but the sphere is not flat

%I do not think that I have ever seen a map of the Earth that uses Latitude and Longitude as Cartesian coordinates.
The most familiar map, the Mercator map, takes a stereographic projection of the Earth onto the (complex) plane,
and then takes the image of the entire plane into an infinite strip simply by taking the complex logarithm.
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i

Jyes f(x)(dz) or [¢ f(dz) and other related expressions will denote the “ordinary’
a region S € R.

integral over

Example. [, exp(—||z]|?/2)(dz) = (27)"*/2 and similarly S exp(—H:vH%)/Z(dA) = (2m)"*/2.
(||A]|% = tr(ATA) = dij a?j) =“Frobenius norm” of A squared.

If an object has n parameters, the correct differential form for the volume element is an n-
form. What about z € S"7!, ie., {z € R : ||z|| = 1}? A,_;dz; = (dz) = 0. We have
Yr2=1= Y zdr; =0=dz, = —é(mdzl + -+ zp_1dzy_1). Whatever the correct volume
element for a sphere is, it is not (dz).

As an example, we revisit spherical coordinates in the next section.

9.4 Better Spherical Coordinates

Students who have seen any integral on the sphere before probably have worked with traditional
spherical coordinates or integrated with respect to something labeled “the surface element of the
sphere.” We mention certain problems with these notations. Before we do, we mention that the
sphere is so symmetric and so easy, that these problems never manifest themselves very seriously
on the sphere, but they become more serious on more complicated surfaces.

The first problem concerns spherical coordinates: the angles are not symmetric.

They do not interchange nicely. Often one wants to preserve the spherical symmetry by writing
xz = gr, where r = ||z|]| and ¢ = z/|z|. Of course, ¢ then has n components expressing n — 1
parameters. The n quantities dgi,...,dg, are linearly dependent. Indeed differentiating ¢7q = 1
we obtain that ¢'dg = Y1 | ¢;dg; = 0.

Writing the Jacobian from z to g;r is slightly awkward. One choice is to write the radial and
angular parts separately. Since dz = gdr + dqgr,

¢tdz = dr and (I — q¢¥)dz = rdq.

We then have that
dz = dr A (rdq) = r"~'dr(dg),

where (dq) is the surface element of the sphere.

We introduce an explicit formula for the surface element of the sphere. Many readers will
wonder why this is necessary. Experience has shown that one can need only set up a notation such
as dS for the surface element of the sphere, and most integrals work out just fine. We have two
reason for introducing this formula, both pedagogical. The first is to understand wedge products on
a curved space in general. The sphere is one of the nicest curved spaces to begin working with. Our
second reason, is that when we work on spaces of orthogonal matrices, both square and rectangular,
then it becomes more important to keep track of the correct volume element. The sphere is an
important stepping stone for this understanding.

The second problem concern the surface element. If one thinks about how this element is used,
it is never particularly quantified. Mostly one uses the symmetry of the sphere to make any issue
about its size melt away.

Alternatively, we can derive an expression for the surface element on a sphere. We introduce an
orthogonal and symmetric matrix H such that Hg = e; and He; = ¢, where e; is the first column
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of the identity. Then
dr
r(Hdq)s
Hdz = e;dr + Hdgr = r(Hdg)s

r(Hdq)n
Thus

n
(dz) = (Hdz) = r"'dr /\ (Hdg); .
=2
We can conclude that the surface element on the sphere is (dg) = A7 ,(Hdg);.
Householder Reflectors

We can explicitly construct and H as described above so as to be the Householder reflector.
Choose v = e; — ¢ the external angle bisector and

T
VU
H=1-2——-.
vTy
See figure (9.4) which illustrate that H is a reflection through the internal angle bisector of ¢ + e;.
Notice that (Hdgq); = 0 and every other component Z?Zl H;jdg; (i # 1) may be thought of as
a tangent on the sphere. H = H' , Hq = e;,He, = q1, H> = I, and H is orthogonal.

v=g-—e€ q+er

Application

Surface Area of Sphere Computation

We directly use the formula (dz) = 7" 1dr(dg):

o0
= [ et = [T it [
z€ER”? r=0

— 9"3°T (g) /(dq) or /(dq) = ?ZT;) = A,

(V1R

(2m)
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and A, is the surface of the sphere of radius 1. For example,

Ay = 27 (circumference of a circle)
As = 4m (area of a sphere in 3d)
A4 = 27‘(’2

Geometrical Interpretation: A Rotating Coordinate System

We introduce the notation (dz) for dz! A ... A dz". We will ignore signs, because most of our
integrations will be over positive quantities. It then follows that

(dz) = (Hdz) = r"'dr A, (Hdq);.

This is a perfect time to review the y,, distribution, usually seen in the form x2 (“chi-squared”).
If z € R” is a vector of random variables that are independent standard normals, then the joint
density for z is

(2m) "% exp(— ||| /2) (da).

The random variable ||z| is said to have the x, distribution. Its probability density is readily
computed to be
on/2—1

I'(n/2)

—r2/2, n—1

e

9.5 Jacobians for Matrix Factorizations

€n
n P = Q @I

H,..H1A = R
A = (H\Hy...H,)R
A = HR
dA = dHR+ HdR
HTdA = (HTAH)R+dR

9.5.1 The QR Decomposition

We now have the framework to compute Jacobians for arbitrary matrix factorizations.

Let O(m) denote the “orthogonal group” of m x m matrices @ such that Q7Q = I. We have
seen (Q1dQ) = A,s j gldg; is the natural volume element on O(M). Also, notice that O(n) has two
connected components. When m = 2, we may take

cC —S
S C

Q:[ ](02+s2:1)

for half of O(2). This gives
Q%dQ = cos@ sind —sinfdf —cosfdd \ [ 0 —db
~\ —sin® cos@ cosfdd —sinfdd )\ dd 0O
in terms of df. Therefore (Q7dQ) = dé.
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QR Decomposition

x
0
Let A € R™™(m < n). Taking x = a;, we see 3H; such that H; A has the form | | |. We can then
0
10 0 T T
0 0 =z
construct an Hy = . 7 so that HoH{A = . . |- Continuing H,,--- H1A =
: > Do
0 0 0
R
or A= (Hy---Hyp) , where R is m x m upper triangular (with positive
(0]

0 --- 0
diagonals). let @) = the first m columns of Hy --- Hy,. Then A = QR as desired.

The Stiefel Manifold

The set of Q € R®™ such that Q7Q = I,,, is denoted Vinn and is known as the Stiefel manifold.
Considering the Householder construction, 3H1, - , Hy, such that.

1 0
HypHpy - HiQ = (Why?)

so that ) = 1st m columns of H1Hy -+ - Hy,_ 1 Hyp,.

Corollary 9.1. The Stiefel manifold may be specified by (n — 1) + (n —2) + ---+ (n — m) =
mn —1/2m(m + 1) parameters. You may think of this as the mn arbitrary parameters in an n X m
matriz reduced by the m(m + 1)/2 conditions that qlq; = 6;; for i > j. You might also think of this
as

dim{Q} =dim{A} -  dim{R}
T T
mn m(m +1)/2

It is mo coincidence that it is more economical in numerical computations to store the Householder
parameters than to compute out the Q).

This is the prescription that we would like to follow for the QR decomposition for the n by m
matrix A. If Q € R™" is orthogonal, let H be an orthogonal m by m matrix such that H’Q is the
first m columns of I. Actually H may be constructed by applying the Householder process to Q.
Notice that @ is simply the first m columns of H.

As we proceed with the general case, notice how this generalizes the situation when m = 1. If
A= QR, then dA = QdR+dQR and H'dA = H'QdR+H'dQR. Let H = [hq, ..., hy,]. The matrix
H'QdR is an n by m upper triangular matrix. While H7dQ is (rectangularly) antisymmetric.
(hIh; = 0 implies h1dh; = —hjrdhi)
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In matrix form:

( d7"11 d’l‘12 e d’l"lm \ 0 —hgdhl . —h%dhl \
d’r‘22 . d’l"Qm hgdhl 0 . —h?ndhz
HTdA = ram |t | AZdR RIdRy ... 0 R
h%ldhl hEElth .. h%ldhm
\ hIdh,  hldhy ... hldh,

By (dR) we mean A; < ;dri;. For the antisymmetric H’dQ we take the exterior derivative of all
the elements below the diagonal:
(H™dQ) = \\ hidh;.
1>]

Theorem 9.2. The Jacobian of the change of variables A = QR is

ﬁr ~(dR)(HTdQ),

i
i=1

where (H1AQ) = Nis; hldh;.

Proof. We first take the exterior derivative of the elements in H'dQR that are below the diagonal,
one column at a time from left to right. Because of the multiplication of each entry by ri1, the
first column is 7, * /\J — thh1 (As it was when we only had a sphere.) The second column is
multiplied by ro9 and then 719 times the first column is added to it. However the addition of the first
column makes no further contribution to the exterior product because identical differential forms
“wedge out” to zero. This pattern continues: r;; multiplies the entries in the jth column n — j of
which are below the diagonal, and sums do not make a contribution. This gives r;’j_j Nis; hldh;.
The next step is to take the exterior product with the elements of dR + HTdQR that are on or
above the diagonal. This is easy since the terms in H7dQR make no further contribution. O

9.5.2 Haar Measure and Volume of the Stiefel Manifold

It is evident that the volume element in mn dimensional space decouples into a term due to the
upper triangular component and a term due to the orthogonal matrix component. The differential
form

(HTAQ) = /\ /\ hldh;
Jj=li=j+1
is the natural volume element on the Stiefel manifold.
We may define

() = /S (HTAQ).

This represent the surface area (volume) of the region S on the Stiefel manifold. This “measure”
i is known as Haar measure when m = n. It is invariant under orthogonal rotations.
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Exercise. Let T'y(a) = 7™M V/ATI™ Tla — 3(i — 1)]. Show that the volume of Vi is

2mﬂ.mn/2
Vol (V, = —
(V) Pm(%”)
Exercise.  What is this expression when n =29 Why is this number twice what you might have

thought it would be?

Exercise. Let A have independent elements from a standard normal distribution. Prove that Q
and R are independent, and that Q is distributed uniformly with respect to Haar measure. How are
the elements on the strictly upper triangular part of R distributed. How are the diagonal elements of
R distributed? Interpret the QR algorithm in a statistical sense. (This may be explained in further
detail in class).

Readers who may never have taken a course in advanced measure theory might enjoy a loose
general description of Haar measure. If G is any group, then we can define the map on ordered pairs
that sends (g, h) to g~'h. If G is also a manifold (or some kind of Hausdorff topological space), and
if this map is continuous, we have a topological group. An additional assumption one might like is
that every g € G has an open neighborhood whose closure is compact. This is a locally compact
topological group. The set of square nonsingular matrices or the set of orthogonal matrices are
good examples. A measure y(E) is some sort of volume defined on E which may be thought of
as nice (“measurable”) subsets of G. The measure is a Haar measure if y(gF) = p(E), for every
g € G. In the example of orthogonal n by n matrices, the condition that our measure be Haar is
that
@@= [ | f@@)(@"0.

Q€Q,'s
In other words, Haar measure is symmetrical, no matter how we rotate our sets, we get the same
answer. The general theorem is that on every locally compact topological group, there exists a
Haar measure p.

QeS

9.5.3 Symmetric Eigenproblem

If S € R"" is symmetric it may be written
S =QAQ",Q € O(n),A =dim(Ai, -, \y)

the columns of @) are the eigenvectors, while the \; are the eigenvalues.
Computing the Jacobian is performed by the product rule for differentiation and conjugating
by Q:
dS = dQAQT + QAAQT + QAAQT
Q"dSQ = [QTdQIA — A[QdQ)] + dA

Notice that Q7dSQ is a symmetric matrix of differentials with d); on the diagonal and q]-qu,-()\z- —X))
as the 7, jth entry in the upper triangular part.

Therefore (Q7dSQ) = [Tic; X — 2j1(dA)(QTAQ). We have from Example 3 of Section 8.3 that
(Q1dSQ) = (d9).
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9.5.4 Singular Values

The singular values of a matrix are far more important than the eigenvalues of a matrix, and yet
eigenvalues are taught as part of every standard linear algebra course, and singular values are still
not mentioned as often as they should. Singular values have a long history, but their important
status was raised by Gene Golub at Stanford, who you may see driving around with his “DR SVD”
or “PROF SVD” California license plate.

The singular values may just as readily be defined for matrices A € R™™_ One definition is
simply that o2 is the ith eigenvalue of the positive definite matrix ATA. The o; are defined to be
non-negative. If A is square, but not symmetric, there is little connection between the eigenvalues
and the singular values of A. It may be an unfortunate accident of mathematical development
that the concept of eigenvalues remains more familiar than the concept of singular values. Because
of this, statisticians refer to the matrices A”A more often than they need to, and proofs become
unnecessarily cumbersome.

An alternative definition is that the singular values are the lengths of the semi-axes of the image
of the unit ball under the transformation A.

The most useful algebraic definition is the singular value decomposition
A=UxVT,

where U is orthogonal € R™", . is diagonal with o; in the 7,7 th position, and V is a square
orthogonal matrix € R™»". We will assume n > m, though there is an obvious modification for
n < m. There are various expanded forms, for instance U could be square, and 3 € R™»™, etc.

If the singular values of A are distinct, then the singular vectors V are defined up to sign, as the
eigenvectors of ATA. If the singular values are positive, this uniquely determines U as AVIE 1.
Therefore we may say that generically the singular value decomposition covers A a total of 2™
times.

A = UxvT
dA = dvzvT+UudzvT+Uusdv?
UvldAv = vTavz +dzxviav

9.6 Advanced Differential Forms

9.6.1 Multilinear Functions

Mathematically, the wedge notation wi A- - - Awy, may be identified with a real linear function on n by
k matrices. Specifically, let the matrix W = [wy ... wy], and consider the linear function Ty (V') =
det(WTV). A moment’s thought will convince the reader that this is a multilinear function, and
if we interchange two columns of W, we negate the function. Real combinations of such functions
are in one to one correspondence with real combinations of wedge products.

Perhaps we ought to define a slightly more general object: a rank k tensor. Let T'(v1,...,vg)
denote a real valued multilinear function of the k vectors v; € R*. This means that if o and 8 are

scalars, then for each 7
T(v1,...,qv;+ B, ..., vp) = T (V1. ey Ve s k) + BT (V1,50 .., V).

In terms of the components, any multilinear function may be written as

T(v) = Z Tiy,igVig,1 - -+ Vi k-
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If we have a collection of k vectors such as vq, ..., v, in R”, it is notationally convenient to construct
the matrix V whose jth column is the jth vector. (V = [v1...vg])

Therefore, a multilinear function may be thought of as a a “square” k-dimensional array of n*
numbers, i.e., an n X n X ... X n array of numbers. It is clear that the set of multilinear functions
form a vector space of dimension n*, with the usual definition for linear combinations of functions:

(a1 + BTL) (V) = oT1 (V) + BTa(V).

When k = 0, T is scalar. When k£ = 1, given any vector w € R", we have Ty, (v) = w’v. When
k = 2, given any n by n matrix A, we have Ta(vi,ve) = v{Avy. For k > 2 elementary linear
algebra notation breaks down, but the idea remains straightforward. (Is that because we are three
dimensional creatures used to writing on two dimensional paper?)

Elementary linear algebra notations, however, is just perfect for the multilinear functions that
we are considering: Let W be an n by k matrix and define Ty (V) (here V' = [v1,...,vx]) as
det(WTV). Notice that we are taking the determinant of a k by k matrix.

Exercise. Prove that Ty is indeed a rank k multilinear function using nothing other than familiar
properties of the determinant.

When k = n, it follows from the identity det(W1V) = det(W)det(V) that Ty = (det W)Tr,
where I denotes the n by n identity matrix. When k& > n we are taking the determinant of a matrix
of dimension greater than n, but of rank at most n. Therefore Ty = 0 when k > n.

Since the tensors of the form Ty are a subset of an n* dimensional vector space, we may form
the vector space Anti generated by all possible linear combinations of the tensors Ty . This space
is known either as the as the set of antisymmetric tensors or alternating tensors. This space is
isomorphic to the kth exterior product.

Antisymmetric tensors T have the property that if V' has two identical columns, then T'(V) = 0,
and further if we interchange two columns of V' to create a V', then T'(V') = —T(V). To prove
this, note that this statement follows from the determinant for the tensors of the form Ty, and
therefore this property holds for linear combinations of such tensors.

Now we turn to the algebra of differential forms. So far, all you have seen are algebraic objects,
tensors or in particular antisymmetric tensors. By the magic of switching notation, but using no
further tricks, we will create an object that looks like a volume element for integration.

Let W be a matrix each of whose columns contains n — 1 zeros, and one value 1. We may write
W = [ei,---,ei,), where e; denotes the jth unit vector (i.e., jth column of the identity matrix.)

As a matter of notation, we will write the tensor Ty as

d:EZ'l AN diL‘iz AN... A dl‘zk

and we will start to forget that this was once a tensor. The reader may verify that if any of the
two 4;’s are equal, then we have the 0 tensor, and if we interchange two of the 4’s say 41 and 4o,
then we negate the tensor.

Exercise. Show that the tensors of the form
da;, Adzi, Ao A d:L‘,'k,

for i1 < ig < ... < i form a basis for antisymmetric tensors. Therefore, it is a vector space of
dimension (}}).

For any matrix Ty we may write the tensor in this notation as
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(zi:wildfbi) A (Zi:’wzadxi) AN (;wikdxi) ]

It becomes very easy to algebraically expand this in terms of our basis. We simply assume that sums
distribute, and wedges alternate. In particular, when n = k, we see directly that Ty = (det W)T7.
This could have been our definition of wedge products. It would have been a bit simpler, but then
you might not have seen what all this has to do with tensors. (This approach is taken in Muirhead’s
book, for example.)

9.6.2 Differential Forms

It is easy to see that every rank 0 and rank 1 multilinear function is trivially antisymmetric. A
rank two tensor: T'(v1,ve) = v] Avy is antisymmetric if and only if, A is an antisymmetric matrix,
i.e., AT = —A. The reader should notice that we defined rank 2 alternating tensors in terms of
linear combinations of functions derived from 7 by 2 matrices W, and now we are noting that all
alternating tensors may be expressed as antisymmetric matrices. Compare both definitions closely.

What about rank 3 antisymmetric tensors? Since such a tensor is a multilinear function, it
may be represented as an n X n X n cubical array of entries Tjjx, 1 < 4,5,k < n. If you can
imagine holding this cube by the two corners at the 1,1,1 entry and the n,n,n entry, then the
array of numbers is invariant under a 120 degree rotation through this axis. Other symmetries
(in fact reflections) of the cube preserving these two points, negate the entries. Thus we see the
generalization of transposing, and antisymmetric matrices. Just an an antisymmetric matrix is
determined by its (}) entries in the upper triangular part, a rank 2 tensor is determined by the (5)
entries in an upper tetrahedral part covering nearly one sixth of the array. This idea generalizes as
well.

We now digress onto a brief discussion of how differential forms fit into other areas of mathe-
matics and physics. The reader primarily interested in eigenvalues of random matrices may safely
omit this section.

An exterior differential form of rank or degree k may be thought of as an antisymmetric mul-
tilinear function at every point z € R™:

¢ = d(z) = Z firi(@)dziy AL Ady,

11<...<0

Usually the coefficient functions f;, .. ;. (z) are taken to be sufficiently differentiable or analytic for
whatever purpose one has in mind. The simplest example is a rank 0 form, which is nothing other
than a function f(z) defined on R”. A rank 1 form may be thought of nothing other than a function
from R” to R". We may associate, v(z) with vi(z)dz; + --- + vp(z)dz,. If f is a differentiable
function, we may consider its gradient as
of

of

dz,,.

Thus the action of taking a gradient turns a 0 form into a 1 form.
In general, if ¢ is a differential k£ form, we can form a differential k + 1 form d¢ by generalizing
the idea of the gradient:

d¢:Z Z Z5#;7%(31%'/\d.’Eil/\.../\d:vik.

7=0 141 <...<ip,
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Let n = 3. If ¢ is a O-form, i.e., a function, d¢ is its gradient. As a tensor, d¢(v) computes a
directional derivative at z in the direction v. If ¢ is a 1-form, i.e., a vector function of R?, sometimes
called a vector field, then d¢ is an object you may recognize: it is the curl of the vector field. Lastly,
if ¢ is the 2-form ¢ = fidxo Adzs+ fodzs Adxy + fzdzi Adza, then d¢ is what you might remember
from your advanced calculus days as the divergence of (f1, fa, f3).

Exercise. Prove that dd¢ = 0 always.

A form ¢ is called closed if d¢ = 0, while ¢ is called exact if ¢ = df for some form 6. Exercise
1 may be reworded: prove that if ¢ is exact, then ¢ must be closed. Under the right assumptions,
the converse also holds. (See an advanced book on calculus on manifolds.)

The idea of a differential form can be well defined on arbitrary manifolds, but this is beyond
the scope of this course. The basic idea remains the same as you see here, but it is necessary to
first define coordinates on the manifold, then define differential forms on these coordinates in a
consistent manner.

9.6.3 Differential Forms in Physics

For readers curious how differential forms are used in physics, we express Maxwell’s equations in
differential form.

At every point x € R3 can be found an electrical field vector F(r) € R® and a magnetic field
vector B(z) € R3. The electrical field vector describes how a charged particle will be influenced at
that point by electrical attraction and repulsion, and the magnetic field describes the influence of
the magnetic field on the same particle. If we add on z4 as the time coordinate, then E(x) and
B(z) describe the fields at a particular point in space at a particular time.

Let F' denote the antisymmetric matrix

0 —E, —E, —Ej
E 0 By —B
E, —Bjs 0 B
E; By —B 0

or the associated tensor F' = —FE1dzy Adzy — Fodxi Adxs — F3dxy Adxyg + Bsdxo A dxg — Badxa A
dz4 + Bidxs A dzy.
Special relativity combines all the electrical and magnetic forces on an electron into one matrix

multiply F'u where u is the relativized velocity vector: u; = 1”—_"1}2, for1=1,2,3, and ug = \/11_?

in units such that the speed of light is 1.

Two of Maxwell’s equations may be obtained from the equation dF' = 0. These equations are
known as the magnetostatic and magnetodynamic equations. Feel free to derive them for yourself,
and as a check, find someone with a T-shirt that has Maxwell’s equations written in differential
form.

The other operator on differential forms is the divergence. The divergence turns k forms into
k —1 forms. It is linear and defined on ¢ = g(x)dz;, A ... Adz;, as

t 8g(x)
V-¢= dz;, .
’ ]21 Oz;,; /\ v

m#j

The bigwedge notation indicates the term dz;, Adz;, A ... Adz;, with the dz;; term omitted.
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If we may introduce another physical quantity J(z) € R*, whose first three components are the
current density, and whose last component in the charge density at z € R*, then the other two
Maxwell’s equations are V - F' = J. These are the electrostatic and electrodynamic equations.

In summary, Maxwell’s equations are

dFF =0 and V.-F=J.

These two equations can be combined into one Poisson like equation V - dA = J, where dA = F,
but perhaps we have digressed enough.

One can also integrate differential forms over appropriate manifolds generalizing the famous
Stokes’ and Green’s formulas.
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