Chapter 8

Jacobians of Matrix Transforms
(without wedge products)

Chapters 8 and 9 provide the background to derive the matrix Jacobians such as those found in
Chapter 42.

8.1 Matrix and Vector Differentiation

In this section, we concern ourselves with the differentiation of matrices.

We begin with the familiar product rule for scalars,
d(uv) = u(dv) + v(du),

from which we can derive that d(z3) = 3z2dz. We refer to dz as a differential.
We all unconsciously interpret the “dz” symbolically as well as numerically. Sometimes it is
nice to confirm on a computer that
(x+¢) — 23
€
I do this by taking x to be 1 or 2 or randn (1) and € to be .001 or .0001.
The product rule holds for matrices as well:

AUV) = U@V) + (dU)V.

~ 3z2. (8.1)

In the examples we will see some symbolic and numerical interpretations.
Example 1: Y = X3
We use the product rule to differentiate Y (X) = X3 to obtain that
d(X?) = X3(dX) + X(dX)X + (dX)X?.

When I introduce undergraduate students to matrix multiplication, I tell them that matrices are
like scalars, except that they do not commute.

The numerical (or first order perturbation theory) interpretation applies, but it may seem less
familiar at first. Numerically take X=randn(n) and E=randn(n) for ¢ = .001 say, and then compute

(X +€E)3 - X3

€

~ X’E+XEX + EX?. (8.2)
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This is the matrix version of (8.1). Holding X fixed and allowing E to vary, the right-hand side is
a linear function of E. There is no simpler form possible.
Symbolically (or numerically) one can take dX = Ej; which is the matrix that has a one in
element (k,!) and 0 elsewhere. Then we can write down the matrix of partial derivatives:
0x3 9 9
9o = % Br) + X (Ep) X + (Ep) X°.
Lkl
In general, the directional derivative of Y;;(X) in the direction dX is given by (dY);;. For a
particular matrix X, dY (X) is a matrix of directional derivatives corresponding to a first order
perturbation in the direction £ = dX. It is a matrix of linear functions corresponding to the
linearization of Y (X) about X.

Structured Perturbations

We sometimes restrict our ¥ to be a structured perturbation. For example if X is triangular,
symmetric, antisymmetric, or even sparse then often we wish to restrict £ so that the pattern is
maintained in the perturbed matrix as well. An important case occurs when X is orthogonal. We
will see in an example below that we will want to restrict E so that X”FE is antisymmetric when

X is orthogonal.
Example 2: y = z'z

Here y is a scalar and dot products commute so that dy = 2z7dz. When y = 1, z is on the unit
sphere. To stay on the sphere, we need dy = 0 so that z7dz = 0, i.e., the tangent to the sphere is
perpendicular to the sphere.

Example 3: y=zTAz
Again y is scalar. We have dy = dz” Az + 27 Adz. If A is symmetric then dy = 227 Adz.
Example 4: Y = X L.

We have that XY = I so that X(dY) + (dX)Y =0 so that dY = — X~ 'dX XL

We recommend that the reader compute € ! ((X + €E) ' — X !) numerically and verify that
it is equal to — X TEX L.

Example 5: I = QQ.
If Q is orthogonal we have that Q7'dQ + dQ”Q = 0 so that Q7'dQ is antisymmetric.

Notation:
Let
z1
T = e R".
Tn
We denote a vector of differentials by
d:L'l
dr =
dz,
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Similarly if A € R™", then we have the matrix of differentials

da;; -+ daig
dA =

day1 -+ dapg

We are allowed to take any linear function of differentials with coefficients that depend on z.
Thus we do not have any problem writing 2dz; + 5dz2 or mi’dwl + zodzs. We also have no problem
having differentials as elements of vectors and matrices. Indeed we already have when we used the
notation dz,dX,dY,dQ in the previous examples.

Example 6: If y is a scalar function of =1, zo, ..., z, then we can write

Oy Oy dy
dy = —d —d .+ —dz, .
Y or1 o1+ 0x9 T2+ + oxy, In

We can always write dY as a matrix of differentials involving the elements of dX and often the
elements of X as well.

Example 7: Let X = [ I; g ] and Y = X? then

2pdp + gdr + rdg gdp + (p+ s) dg + ¢ds
rdp+ (p+s)dr +rds  qdr +rdqg + 2 sds

dy = (8.3)

8.2 Matrix Jacobians (getting started)

8.2.1 Definition

Let z € R” and y = y(z) € R be a differentiable function of z. It is well known that the Jacobian

matrix
% Oy
0x1 Ozy ( . )
= =&
% e ayn xJ 1,j=1,2,...,n
al‘l an

evaluated at a point z approximates y(z) by a linear function. Intuitively y(z + §z) ~ y(z) + Joz,
i.e., J is the matrix that allows us to invoke perturbation theory. The function y may be viewed
as performing a change of variables.

Furthermore (intuitively) if a little box of n dimensional volume € surrounds z, then it is
transformed by y into a small volume of size | det J|e around y(x). Therefore the Jacobian |det J|
is the magnification factor for volumes.

If we are integrating some function of y € R” as in [ p(y)dy, (where dy = dy1 ...dys), then
when we change variables from y to z where y = y(z), then the integral becomes [ p(y(z)) gg", dz.
For many people this becomes a matter of notation, but one should understand intuitively that the
Jacobian tells you how the little volume elements scale.
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The determinant is 0 exactly where the change of variables breaks down. It is always instructive
to see when this happens. Either there is “no” change of variables or “many” but not one unique
change of variables.

We note that in some literature “the Jacobian” sometimes denotes the Jacobian matrix. Other
times, the matrix is what people refer to simply as “the derivative.” We will stick to the convention
that the Jacobian is the absolute determinant of the Jacobian matrix which we often denote J.

8.2.2 Simple Examples (n=2)

In 9.1 (later) we will show a fancy formalism of using wedge products for deriving Jacobians. Now
we get our feet wet with some simple 2 X 2 examples.

One can compute all of the 2 by 2 Jacobians that follow by hand, but in some cases it can be
tedious and hard to get right on the first try. Code 8.1 in MATLAB takes away the drudgery and
gives the right answer. Later we will learn fancy ways to get the answer without too much drudgery
and also without the aid of a computer.

2 X 2 Example 1: Matrix Square (Y = X?)

2 X 2 Example 2: Matrix Cube (Y = X?3)

2 X 2 Example 3: Matrix Inverse (Y = X 1)

2 X 2 Example 4: Linear Transformation (Y = AX + B)

2 X 2 Example 5: The LU Decomposition (X = LU)

2 X 2 Example 6: A Symmetric Decomposition (S = DM D)

2 X 2 Example 7: Traceless Symmetric = Polar Decomposition (S = QAQT, tr § = 0)
2 X 2 Example 8: The Symmetric Eigenvalue Problem (S = QAQT)

2 X 2 Example 9: Symmetric Congruence (Y = AT SA)

Discussion:

Example 1: Matrix Square (Y = X?)

p
With X = l ] and Y = X? the Jacobian matrix of interest is

r s
Op or dq 0s
2p q T 0 Y11

J= r p+s 0 r 0Yo

q 0 p+s q Y19
0 q T 2s dY2

On this first example we label the columns and rows so that the elements correspond to the definition
J = ( g?:l). Later we will omit the labels. We invite readers to compare with equation (8.3). We

see that the Jacobian matrix and the differential contain the same information. We can compute
then
det J = 4(p + 5)%(sp — qr) = 4(tr X)? det(X).

Notice that breakdown occurs if X is singular or has trace zero.

Example 2: Matrix Cube (Y = X?3)
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P q
With X = and Y = X3
T S
3p*+2qr  pg+q(p+s) 27rp + sr qr
2rp+sr p?+2qr+(p+s)s r2 P+ 28T
| 2pg+gs > p(p+s)+2qr+s* pg+2gs

gr pg+2qs r(p+s)+sr 2qr + 352

so that
det J = 9(sp — qr)?(qr + p* + s* + sp)? = 9(det X)(tr X% + (tr X)?).

Breakdown occurs if X is singular or if the eigenvalue ratio is a complex cube root of unity.

Example 3: Matrix Inverse (Y = X 1)

P q
With X = and Y = X!
T S
—-s2 gs sr  —gqr
2
sr —ps —r° TP
J = det X% x ) ,
gs —q¢* —ps pq
—qr pg rp —p?
so that

det J = (det X)™*.

Breakdown occurs if X is singular.

Example 4: Linear Transformation (Y = AX + B)

[a b 0 0]
cd 00
0 0 a b

| 0 0 ¢ d |

The Jacobian matrix has two copies of the constant matrix A so that the determinant is det A% =
(det A)2. Breakdown occurs if A is singular.
Example 5: The LU Decomposition (X = LU)

The LU Decomposition computes a lower triangular L with ones on the diagonal and an upper
triangular U such that X = LU.
For a general 2 x 2 matrix it takes the form
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which exists when p # 0.
The Jacobian matrix is itself lower triangular

1 0 0 0

r —1

0 0 1 0]’
s _sp—qr _q _r
P p? D P

so that det J = 1/p. Breakdown occurs when p = 0.
Example 6: A Symmetric Decomposition (S = DM D)

Any symmetric matrix X = [ f Z ] may be written as

0 r/vps 1

The three independent elements in D and M may be thought of as functions p,r and s of X. The
Jacobian matrix is

0
X = DMD where D:[‘/ﬁ \[] and M:[ L /s |
S

1
7 0 0
1 1
J = 5 0 - 0
_r/p _r/s 2
Vps Ps  \/ps
so that )
detJ = —
4ps

Breakdown occurs if p or s is 0.

Example 7: Traceless Symmetric = Polar Decomposition (S = QAQT, tr S = 0)

The reader will recall the usual definition of polar coordinates. If (p, s) are Cartesian coordinates,
then the angle is § = arctan(p/s) and the radius is 7 = 1/p? + s2. If we take a symmetric traceless

2 X 2 matrix
p S
S = ,
s —p

and compute its eigenvalue and eigenvector decomposition, we find that the eigendecomposition is
mathematically equivalent to the familiar transformation between Cartesian and polar coordinates.
Indeed one of the eigenvectors of S is (cos ¢,sin ¢), where ¢ = 6/2. The Jacobian matrix is

S _ __p _
p2+52 p2+52
p s
VPP +s?  /pP+s?

The Jacobian is the inverse of the radius. This corresponds to the familiar formula using the more
usual notation dzdy/r = drdf so that det J = 1/r. Breakdown occurs when r = 0.

J =
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Example 8: The Symmetric Eigenvalue Problem (S = QAQT)

We compute the Jacobian for the general symmetric eigenvalue and eigenvector decomposition.

Let
S—[p 3]_[cos9 —sinO][)\l ][cos@ —sinO]T
s T sin 6 cos 0 Ao sin 8 cos 0 )
We can compute the eigenvectors and eigenvalues of S directly in MATLAB and compute the
Jacobian of the two eigenvalues and the eigenvector angle, but when we tried with the Maple
toolbox we found that the symbolic toolbox did not handle “arctan” very well. Instead we found

it easy to compute the Jacobian in the other direction.
We write S = QAQT, where Q is 2 x 2 orthogonal and A is diagonal. The Jacobian is

—2sinfcos O (A1 — A2) cos? 0 sin? 6
J = 2sinfcos @ (A1 — A2) sin” @ cos? 6
(cos? § — sin? §) (A1 — o) sinfcosf  —sinfcosb
so that
det J = )\1 — )\2 .

Breakdown occurs if S is a multiple of the identity.
Example 9: Symmetric Congruence (Y = AT SA)

Let Y = ATSA, where Y and S are symmetric, but A = [ (2 Z ] is arbitrary. The Jacobian

matrix is
a’> 2ca
J=| b & 2db
ab cd cb+ad

and det J = (det A)3.

The cube on the determinant tends to surprise many people. Can you guess what it is for
an n X n symmetric matrix (Y = ATSA)? The answer (det J = (det A)"*!)is in Example 3 of
Section 8.3.1.
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/‘Zj acobian2by2.m \

%#Code 8.1 of Random Eigenvalues by Alan Edelman

%Experiment: Compute the Jacobian of a 2x2 matrix function

%Comment : Symbolic tools are not perfect. The author
ym p

yA exercised care in choosing the variables.

syms pgqr sabcdt el e2
X=[p q ; r sl; A=[a b;c dl;

%% Compute Jacobians

Y=X"2; J=jacobian(Y(:),X(:)), JAC_square =factor(det(J))
Y=X"3; J=jacobian(Y(:),X(:)), JAC_cube =factor(det (J))
Y=inv(X); J=jacobian(Y(:),X(:)), JAC_inv =factor(det (J))
Y=A*X; J=jacobian(Y(:),X(:)), JAC_linear =factor(det(J))
Y=[p q;r/p det(X)/pl; J=jacobian(Y(:),X(:)), JAC_lu =factor(det(J))

x=[p s rl;y=[sqrt(p) sqrt(s) r/(sqrt(p)*sqrt(s))];
J=jacobian(y,x), JAC_DMD =factor(det(J))

x=[p s]; y=[ atan(p/s) sqrt(p~2+s~2)];
J=jacobian(y,x), JAC_notrace =factor(det(J))

Q=[cos(t) -sin(t); sin(t) cos(t)];
D=[el 0;0 e2];Y=Q*Dx*Q.’;
y=[Y(1,1) Y(2,2) Y(1,2)]; x=[t el e2];
J=jacobian(y,x), JAC_symeig =simplify(det(J))
X=[p s;s rl; Y=A.’xX#A;
y=[Y(1,1) Y(2,2) Y(1,2)1; x=[p r sI;
K J=jacobian(y,x), JAC_symcong =factor(det(J)) /

Code 8.1

8.3 Jacobians of Linear Functions, Powers and Inverses

The Jacobian of a linear map is just the determinant. This determinant is not always easily
computed. The dimension of the underlying space of matrices plays a role. For example the
. . p n(n+1) . . n(n—1)
Jacobian of Y = 2X is 2"’ for X € R*>*™ 272 for upper triangular or symmetric X, 2~ 2z ~ for

anti-symmetric X, and 2" for diagonal X.

We will concentrate on general real matrices X and explore the symmetric case and triangular
case as well when appropriate.
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8.3.1 Y = BX AT and the Kronecker Product
The Kronecker Product

If A e R™M>™2 gnd B € R™>™2, then the Kronecker product A ® B € R™™Mxm2n2 jg the myny by
mane matrix that contains all products of elements of A with that of B:

allB a1m2B
A®B = :

amllB “e amlsz

There are many important properties of the Kronecker product. We recommend van Loan [278].
Probably most important property is that

det(A ® B) = (det A)"(det B)™, (8.4)

when A is m x m and B is n x n. Also the linear operator from R™" to R™" sending X to BX AT
may be represented by A ® B, where A € R»" B € R™™,

It is important to realize that a linear transformation from R™"™ to R™" is defined by an
element of R™™™" je., by the m?n? entries of an mn x mn matrix. The transformation defined
by Kronecker products is an m? + n? subspace of this m?n? dimensional space.

It is easy to see that if Q1 and Q2 are orthogonal, then so is Q = Q1 ® Q2 because () preserves
Frobenius norms, i.e., | X||r = [|Q% x Q¥ r.

The Symmetric Kronecker Product

If X € R%™ is symmetric, and A, B € R¥™ we can consider the function Y = 2(BX AT + AXBT).

We denote this operator A ®sym B and write Y = (A ®gym B)X. It is a linear map on n(n+1)

2
dimensional space.

Kronecker Product Jacobian Computation

Example 1: General X

Consider the linear map ¥ = BXAT for X € R™", where A € R»",B € R™™. Assume A
and B are diagonalizable, with Au; = MNuw; (i = 1,...,m) and Bv; = pv; (i = 1,...,n). Let
E;; = fuquT The mn matrices E;; form a basis for R™" and they are eigenvectors of our map since
BEZ]AT = /j,Z)\jEZ] The determinant is

II wiri  or  (det A)*(det B)™. (8.5)
1<i<n
1<j<m

The assumption of diagonalizability is not important.

Example 2: Upper Triangular X

For upper triangular X we assume that Y = BX A, BX € R™" upper triangular, A € R™»" lower
triangular.
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We order the eigenvalues so that \; = A; and p; = Bj;. Then E;; = yﬂ;? for i+ < j is upper
triangular since y; and z; are zero below the ith and above the jth component respectively. (The
eigenvectors of a triangular matrix are triangular.)

We then have that

det J = [ Ay = TN An) (apspsl . ilt)
i<j

Note that J is singular only if A or B is.

Example 3: Symmetric X

For symmetric X, we might consider Y = 2(AX B + BTX A) for general A and B. The Jacobian
is not particularly pretty. If A and B are both symmetric and commute if B = AT the situation is
nicer again.

Let E;j = %(xzx;‘r +z;zl). If A and B are both symmetric, the Jacobian is [Tic; Nipg + Ajpsi).
If B = A" then the Jacobian is [];; \id; = (det A)"*'.

8.3.2 Jacobians of Powers and Inverses
General Matrices

Let Y = X2 then
dY = XdX +dXX o dY=I@X+X"®I

Using the E;; as before we see that the eigenvalues of J ® X + XT ® J are \; + Aj so that

fy = X»
n—1
then dY = ZxkdXX"—l—k
k=0
and
n—1
detJ = H(ZA{?A;H—’“)
©>5 \k=0

Symmetric Matrices

IfY =X "'thendY = — X" 1dXX ! ordY = —(X T ® X~!)dX, so that det J = det(X)(~2")_ If
X is symmetric, we have that det J = (det X)~(®*1) for the map ¥ = X 1.

When X is of low rank, we can consider the Moore-Penrose Inverse of X. The Jacobian was
calculated in [457] and [309]. There is a non-symmetric and symmetric version.

Exercise. Compute the differentials and Jacobians for

Y =XY2 gnd Y = X~1/2
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8.4 Jacobians of Matrix Factorizations
(without wedge products)

Let A be an n X n matrix. In elementary linear algebra, we learn about Gaussian elimination,
Gram-Schmidt orthogonalization, and the eigendecomposition. All of these ideas may be written
compactly as matrix factorizations, which in turn may be thought of as a change of variables:
Here is a table that is expanded in Section 35.1.
parameter count

Gaussian Elimination: A= L . U n(n—1)/2+n(n+1)/2
T T
unit lower upper

triangular triangular

Gram-Schmidt: A= Q - R n(n—1)/2 +n(n+1)/2
T T
Orthogonal  upper
triangular
Eigenvalue Decomposition: A = X - A -X1 mZ-n)+n
T T T T
eigenvectors eigenvalues eigenvector eigenvalue

Each of these factorizations is a change of variables. Somehow the n? parameters in A are
transformed into n? other parameters, though it may not be immediately obvious what these
parameters are (the n(n — 1)/2 parameters in @) for example).

Our goal is to derive the Jacobians for those matrix factorizations.

8.4.1 Jacobian of Gaussian Elimination (A = LU)

In numerical linear algebra texts it is often observed that the memory used to store A on a computer
may be overwritten with the n? variables in L and U. Graphically the n x n matrix A

U
A =
L

Indeed the same is true for other factorizations. This is not just a happy coincidence, but deeply
related to the fact that n? parameters ought not need more storage.

Theorem 8.1. If A= LU, the Jacobian of the change of variables is

n
_ ,n—1n-2 - n—i
det J = uy] U9y .. Up—1p—1 = l_IuZZ
i=1

Proof 1: Let A= LU, then using
dA LdU +dLU
L 1dAU ! = UU '+ L YL
UT'eL)'dA = (U'®I)™'dU+ (I® L) 'dL
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ordAd=UT@L)((UT®I) 'dU + (I ® L) 'dL).
Using the triangular case of Section 8.3, the Jacobian of (UT ® I)™! is ujj'ugy - . . u,™ and that
of UT ® L is (det U)" = uyul, ... u", putting the two together we obtain that det J = [Juli *. O

0

That is the fancy slick proof. Here is the direct proof. It is of value to see both.

Proof 2: Let M;; = { i” 7Z, z ; as in the diagram above. Since A = LU, we have that
ij =
i—1
Aij = ZMikMkj +u;; for 1<
k=1
and -
j—
Aij = ZMikMkj + liju; for ©>3j.
k=1
Therefore oA
B 1 i i<
Y] = % Z - ] . (8'6)
(9Mij Ujj if ¢>3

Notice that A;; never depends on Mp, when p > i or ¢ > j. Therefore if we order the variables first
by row and next by column, we see that the Jacobian matrix is lower triangular with diagonal entries
given in (8.6). Remembering that the determinant of a lower triangular matrix is the product of
the diagonal entries, the theorem follows. 0

Perhaps it should not have been surprising that the condition that A admits a unique LU
decomposition may be thought of in terms of the Jacobian. Given a matrix A, let p; denote the
determinant of the upper left k£ by k principal minor. It may be readily verified that w11 ... ugx = pi
and hence the Jacobian is p1ps...pn_1. The condition that A admits a unique LU decomposition
is well known to be that all the upper-left principal minors of dimension smaller than n are non-
singular. Otherwise the matrix may have no LU decomposition. For example,

( (1) 1 > has no LU factorization.

It may also have many LU decompositions as does the zero matrix when n > 1. This degeneracy ex-
plains the need for pivoting strategies (i.e., strategies that reorder the matrix rows and/or columns)
for solving linear systems of equations even if the computation is done in exact arithmetic. Modern
Gaussian elimination software for solving linear systems of equations in finite precision include
pivoting strategies designed to avoid being near a matrix with such a degeneracy.

Exercise. If A is symmetric positive definite, it may be factored A = LL™. This is the famous
Cholesky decomposition of A. How many independent variables are in A? In L? Prove that the
Jacobian of the change of variables is

n
det J = 2™ H jrtii

1)
i=1

Research Question. [t seems that the existence of a finite algorithm for a matriz factorization
is linked to a triangular Jacobian matriz. After all, the latter implies only one new variable need
be substituted at a time. This is the essential idea of Doolittle’s or Crout’s matriz factorization
schemes for LU.
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8.5 Jacobians for Spherical Coordinates

8.5.1 Spherical coordinates

The Jacobian matrix for the transformation from spherical coordinates to Cartesian coordinates
has a sufficiently interesting structure that we include this case as our final example. The structure
is known as a “lower Hessenberg” structure.

We recall that in R, we define spherical coordinates 7,601,602, ...,0,_1 by
r1 = rcosb;
T9 = rsinfycosby
r3 = rsinfsinfycosfs
Tp—1 = rsinfysinfy---sinb,_ocosb,_1
T, = rsinfisinfy...sinf,_osinb,_4
or for j =1,...,n, z; may be written as

j—1
zj=r [H sin 9i] cos 0, (6, =0).

=1

We schematically place an x in the matrix below if z; depends on the variable heading the
columns. The dependency structure is then

r 0 6 v Op9 O,
I X X
To X X X
T2 X X X X
Tp_1 X X X X X
Tn X X X e X X

Therefore the non-zero structure of the Jacobian matrix is represented by the pattern above.
Lower Hessenberg matrices that are non-zero only in the lower triangular part and on the
superdiagonal are referred to as lower element Hessenberg matrices.

It is fairly messy to write down the exact Jacobian matrix. Fortunately, it is unnecessary to do
so. We obtain the LU factorization of the matrix by defining auxiliary variables y; as follows:

Yy = x% R =+ 3;% = 7"2
Yo = LE% e + .’E% = 7'2 Sin2 01
Y3 = x% 4+ 4 :II% = r2sin®#; sin’ 0y
Yn = T2 = r2sin?6;sin? 0y - --sin’ 6,1
Differentiating and expressing the relationship between dy; +dz; for 4,j = 1,...,n in matrix form

45



we obtain that the Jacobian matrix J; ., from z to y is triangular:

1 Tg -+ Tp dzy dy1
To -+ Tp | | dz2 dys

2 =
Zn) \dzn dyn

We recognize that we have an upper triangular matrix in front of the vector of Cartesian
differentials and a lower triangular matrix in front of the vector of spherical coordinate differentials.

11 .- 1 Il da;l dy1
1 ... 1 [ d:EQ dy2

2 . = .
1 Tn dz, dy,

Similarly the Jacobian matrix Jspherical—y from spherical coordinates to y is triangular

2.7" . dr dy:
2r sin 61z, . . do, dys
. 27 sin 91:sm 923,‘2 . d92 = .
2rsin@y - --sinf,,_1x,—1 do,_1 dyn,
Therefore J;_yspherical = Js;)ierical Sy Jo—y-

The LU (really L~ 1U) allows us to easily obtain the determinant as the ratio of the triangular
determinants. The Jacobian determinant is then

277" (sin 7)™ L (sinf2)™ 2(sin €, _1)z1 -+ Tyt

=" (sinf;)" 2. (sin6,_»).

In the next chapter we will introduce wedge products and show that they are a convenient tool
for handling curvilinear matrix coordinates.
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